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Dictionary Learning and Time Sparsity for Dynamic
MR Data Reconstruction

Jose Caballero*, Anthony N. Price, Daniel Rueckert, and Joseph V. Hajnal

Abstract—The reconstruction of dynamic magnetic resonance
(MR) data from an undersampled k-space has been shown to
have a huge potential in accelerating the acquisition process
of this imaging modality. With the introduction of compressed
sensing (CS) theory, solutions for undersampled data have arisen
which reconstruct images consistent with the acquired samples
and compliant with a sparsity model in some transform domain.
Fixed basis transforms have been extensively used as sparsifying
transforms in the past, but recent developments in dictionary
learning (DL) have been shown to outperform them by training
an overcomplete basis that is optimal for a particular dataset. We
present here an iterative algorithm that enables the application
of DL for the reconstruction of cardiac cine data with Cartesian
undersampling. This is achieved with local processing of spatio-
temporal 3D patches and by independent treatment of the real
and imaginary parts of the dataset. The enforcement of temporal
gradients is also proposed as an additional constraint that can
greatly accelerate the convergence rate and improve the recon-
struction for high acceleration rates. The method is compared
to and shown to systematically outperform k-t FOCUSS, a
successful CS method that uses a fixed basis transform.

Index Terms—Dynamic magnetic resonance imaging, com-
pressed sensing, dictionary learning, image reconstruction, sparse
coding.

I. INTRODUCTION

DYNAMIC magnetic resonance imaging (MRI) allows
the visualisation and analysis of anatomical and func-

tional changes of internal body structures through time. This
imaging modality has become a key tool in medical research
and diagnosis mainly because it is non-invasive, non-ionising
and provides a unique quality of soft tissue contrast. The
reconstruction of a sequence of images requires collecting
a number of k-space samples at multiple time points, and
the minimum number of samples needed for a predetermined
spatio-temporal resolution is dictated in classical sampling
theory by the Nyquist criterion [1]. However, the physics of
MRI scanners impose a sequential sampling and the physi-
ology and motion of body organs limit the speed at which
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it can be performed, so meeting the Nyquist criterion often
entails prohibitive scan durations or unfavourable balancing
of spatial and temporal resolution. Acquiring fewer k-space
samples than those imposed classically accelerates the process
but introduces aliasing in image space. As a consequence, de-
aliasing of signals from undersampled k-space acquisitions is
an important stepping stone for the acceleration of MRI.

An advantage in cardiac cine is that the spatio-temporal
redundancy can be predicted to some degree of accuracy
and can be exploited in reconstruction. Methods such as
UNFOLD [2] and Noquist [3] are based on the observation
that only a fraction of the field of view requires the full
temporal bandwidth. The option of data modelling has also
been extensively explored for the optimisation of dynamic
MR acquisition [4]–[10]. Methods like k-t BLAST [11] use
a priori knowledge on the x-f support of the data obtained
from a training process to prune a reconstruction that optimally
reduces aliasing. Others like x-f choice [12] can learn the
support region directly from the undersampled data.

Recently, the developing mathematical field of compressed
sensing (CS) [13], [14], allowing theoretically error-free recon-
structions of undersampled data using non-linear processing,
has been shown to be directly applicable to the problem
of MRI acceleration [15]. Central to this approach is the
assumption of sparsity of the reconstructed data under some
transform domain, and the performance of the reconstruction
relies heavily on the suitability of the sparsity model in terms
of the approximation error it entails. Many of the methods
proposed under the compressed sensing MRI (CSMRI) frame-
work for dynamic imaging, seek for sparsity in the x-f support,
which is the result of applying a Fourier transform of the image
data along the temporal dimension. An example of successful
methods enforcing x-f support sparsity is k-t FOCUSS [16].
The earlier method k-t SPARSE [17] additionally sparsifies
data across space using a wavelet transform, which is known
to provide approximately sparse representations for the vast
majority of natural signals.

The potential of CSMRI methods is widely recognised,
although exploration of the choice of sparsity model has been
somewhat limited. Sparsity is often treated as synonymous
with retrospective compressibility and this can lead to crude
models that do not adhere well to the characteristics of the
data. For high undersampling factors, the reconstruction relies
strongly on the chosen a priori sparsity assumption, and
models that are not representative will recover images with
features that are unexpected in their fully sampled counter-
parts. Wavelet or Total Variation (TV) based methods [17]–
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[19], for instance, are susceptible of generating blocky spatial
artefacts, and very sparse x-f supports will miss out on rapid
temporal changes [16], [20].

Adaptive techniques have been presented recently under
the name of dictionary learning (DL) [21] that can learn
characteristics from a signal and tailor an overcomplete set
of basis functions providing higher levels of sparsity for
that particular signal than those achievable by fixed bases
transforms like wavelet or Fourier transforms. Their potential
has been examined in image denoising [22], inpainting [23]
and classification [24] among other general image processing
tasks, but has also been demonstrated for reconstruction in
accelerated MR within the CSMRI framework [25]–[28].

In this paper, a sparsity model combining patch based
learnt and temporal gradient sparsity is introduced for the
reconstruction of complex-valued cardiac cine from Cartesian
MR undersampled data. A single spatio-temporal dictionary
is trained for the encoding of the whole dataset. In addition,
the temporal gradient transform is explored as an auxiliary
sparsifying transform. This is mainly motivated by the obser-
vation from sample datasets that temporal gradients provide
a sparser representation than spatial gradients. Additionally,
the use of a penalty sparsity term that considers the entire
temporal dimension of the data can enforce temporal cohesion
globally in a way that patch based dictionaries cannot. This
is particularly beneficial when using independent subsamples
for each temporal frame, as this results in artefacts that flicker
in time which tend to increase the temporal complexity of the
target signal.

The aim of this study is to analyse the potential of the
use of dictionaries in the context of cardiac cine. To carry out
this analysis, synthetic experiments are arranged in which data
acquired using parallel coils is retrospectively undersampled
and reconstructed assuming a single coil setup. Conclusions
drawn from these experiments should therefore not be taken
as directly implementable in a real scan scenario, but will pro-
vide a simple paradigm for benchmarking the reconstruction
capabilities of dictionaries. A practical implementation of DL
for MRI will have to consider the extension of this technique
to multi-coil MR technology.

This paper is organised as follows. Section II provides a
formal introduction of the CSMRI problem when cardiac cine
is considered. The two sparsifying transforms exploited in the
algorithm proposed are described in section III and the opti-
misation problem they pose is stated in section IV. In section
V we provide the details necessary for the implementation
of the algorithm, which we term Dictionary Learning with
Temporal Gradients (DLTG), as well as providing comments
on its computational complexity. To conclude, the performance
of the novel technique is analysed in section VI, where it
is thoroughly compared with the k-t FOCUSS algorithm and
where tuning parameters are examined.

II. COMPRESSED SENSING DYNAMIC MRI

The objective of CS is to devise a sampling strategy that
will allow perfect reconstruction of a discrete signal from a
minimum number of samples. The intuition behind it is that

any signal containing the redundancy necessary for its com-
pression subsequent to a classical above-Nyquist sampling, can
be acquired efficiently in an already compressed format from
fewer samples. The downside is that reconstruction is non-
linear and hence also computationally demanding. Medical
images are known to be compressible using the appropriate
transforms [15] and are therefore suited to the CS acquisition
paradigm.

The acquisition domain for MR data is k-space, which is
equivalent to the Fourier domain. A sequence of images can be
seen as 2D Px × Py k-space samples acquired at Pt different
time instances that are stacked as a 3D volume. Let us refer
to the fully sampled dataset as the one fulfilling the Nyquist
sampling criterion. We will represent it in k-space as the
column vector x̂f ∈ CP , produced by the concatenation of
columns in the 3D volume where P = PxPyPt. The vector
sequence in image space xf ∈ CP is related to the k-space
data by x̂f = Fxf + n, where F performs a 2D discrete
Fourier transform (DFT) on each temporal frame and n ∈ CP
is additive white Gaussian (AWG) acquisition noise that is
complex and circular. Now assume only a subset Ω of k-space
is acquired, meaning that x̂u = Mx̂f is the only data available
for reconstruction. The undersampling mask M ∈ Rm×P ,
m � P , contains the rows from the identity matrix that
correspond to the samples of x̂f that are in Ω. Provided a
sparsifying transform S exists such that ‖Sxf‖0 = L � m,
the CS dynamic MRI reconstruction is given by the solution
to

min
x
‖Sx‖0 s.t. ‖MFx− x̂u‖22 < ε, (1)

where ε is a small constant.
The lp norm is defined as ‖x‖p = (

∑
i |xi|p)1/p, with xi

the scalar entry i of x. The case when p = 0 is considered a
pseudo-norm defined as a counter of non-zero elements in x,
hence ‖x‖0 = {#i : xi 6= 0}. In many cases the l0 pseudo-
norm is replaced by the l1 norm as a measure promoting
sparsity in order to make problem (1) convex.

An important requirement for CSMRI is that the sparsifying
transform S is incoherent with the acquisition. This can be
guaranteed if matrix MFS−1 satisfies the restricted isometry
property [29]. Checking this property is an NP hard problem,
but random partial Fourier measurements have been shown to
provide sufficient incoherence with a number of transforms S
and are generally regarded as a good practical choice [15],
[30].

III. SPARSIFYING TRANSFORMS FOR DYNAMIC MRI

There is a direct relationship between the sparsity level L
provided by the transform S and the minimum number of
samples necessary for perfect reconstruction [29]. The sparser
the model chosen, the higher the achievable acceleration rates
will be. In this section, two sparsifying transforms that are
well suited to the problem of cardiac cine are described.
First, an adaptive patch based transform derived from DL
theory is presented for the case of dynamic MR complex
data. Then, the temporal gradient transform is proposed as a
suitable global sparsity model for cardiac cine that can make



CABALLERO et al.: DICTIONARY LEARNING AND TIME SPARSITY FOR DYNAMIC MR DATA RECONSTRUCTION 3

reconstructions converge faster and improve performance at
high undersampling rates.

A. Dictionary learning for dynamic MRI

DL refers to the process of adapting an initial set of basis
functions to a specific signal through a training process such
that it will provide a sparse representation of that particular
signal. Denote training patches xT,i ∈ Rn, i = 1, ...,M , as
column vectors of size n to be used for the training of a
dictionary D ∈ Rn×N of N atoms arranged as column vectors.
The training of a real-valued dictionary adapted to that training
set can be stated as

min
D,ΓT

‖γT,i‖0 s.t. ‖xT,i −DγT,i‖22 < ε ∀i = 1, ...,M,

(2)
where ΓT ∈ Rn×M is a matrix gathering the sparse represen-
tation of xT,i as column vectors γT,i. The subscript T specifies
that these are variables for training. After this process, the
dictionary can be used to find an approximation of a real-
valued dataset as a sparse coding problem with a greedy l0
minimisation technique such as orthogonal matching pursuit
(OMP) [31].

Recently, DL has been used for 2D structural MR image
reconstruction largely outperforming competing techniques
based on fixed basis transforms [25]. The extension to the
case of MR sequences was introduced in [26] with the use of
spatio-temporal 3D dictionaries, but only the reconstruction of
synthetic real-valued sequences without a phase component
was addressed. This is not feasible in practice since the
observed k-space samples always relate to a complex image.

The training of complex-valued dictionaries that are suitable
for MR data representation is possible defining Γ and D as
complex-valued variables as originally proposed in [25], [32].
Instead, we carry out this representation by using a single real-
valued dictionary which is trained on real and imaginary parts
of MR data for their independent coding. In section VI-E we
look at the differences between these two learning and coding
strategies for the processing of MR data.

Previous work has already investigated the use of dictionary
learning for cardiac cine. In [32], complex spatio-temporal
dictionaries are learnt and used as unique sparse model for
patches of the reconstructed data. A key difference with the
method proposed here apart from the training strategy is
the fact that the dictionary is propagated and updated along
the temporal dimension. This was proposed for dictionary
learning applications in natural video processing, where the
data structure is expected to rapidly change across time, and
propagating and updating the dictionary adapts it to changing
information [33]. However, the variability in cardiac cine data
can be assumed to be limited and therefore a single training
stage should be able to capture the structural information
required, hence avoiding the additional computational load
needed for updating the dictionary at each temporal frame.

Other variations of learning methods are possible. In [34]–
[36], the trained frame consists of temporal functions that
sparsely represent the temporal profile of each pixel in the

dataset. Although there exist algorithmic differences in the
reconstruction process, the concept of this previous work can
be thought of as using independent patches that are only
temporal and cover the entire dataset. Cardiac cine data is
known to be redundant through space as well as through time
(although it is usually the case that the temporal dimension is
more redundant than the spatial dimension), which is why also
exploiting spatial sparsity with a spatio-temporal dictionary
could be advantageous.

B. Temporal gradient sparsity

An additional sparsity constraint can be imposed on the
temporal finite differences (i.e. the first order temporal gra-
dient) of the dataset. Many authors have explored TV for
imposing sparsity constraints on a CSMRI reconstruction
because it provides sensible sparsity levels, but also because
its optimisation can be extremely efficient [15], [18], [37],
[38]. In many cases, TV is not the main sparsifying transform
but rather an auxiliary constraint that can stabilise and correct
the solution provided by the main transform. This operation
considers an equally weighted combination of the pixel-wise
finite differences along space and time, but this is rarely
a sensible assumption in cardiac cine because spatial and
temporal gradients, which make up the individual dimensions
of TV, will usually have different sparsity levels.
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Fig. 1. Comparison of the decay in transform coefficients of transforms ∇x,
∇y and ∇t. The latter shows the fastest decay.

Consider a complex-valued single slice cardiac cine scan to
be a volume X3D of entries (X3D)h,i,j = Xh,i,j in the x, y,
and t axes. An example magnitude temporal frame of this kind
of datasets is shown in Fig. 3(a). We denote (∇xX3D)h,i,j =
Xh+1,i,j − Xh,i,j the finite difference result of X3D along
dimension x and similarly (∇yX3D)h,i,j = Xh,i+1,j −Xh,i,j

and (∇tX3D)h,i,j = Xh,i,j+1 − Xh,i,j along dimensions y
and t. Expressing (∇xx)h,i,j , (∇yx)h,i,j and (∇tx)h,i,j as
equivalent expressions when x is a concatenated column vector
version of X3D, and |x| referring to the element-wise absolute
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value of the complex vector x, Fig. 1 shows the decay of
magnitude coefficients of the three transforms, ordered and
normalised.

The faster decay of the coefficients in the ∇t domain
confirms that the information in this example is sparser in first
order temporal gradients than in the spatial gradients. For this
reason, we only use ∇t as an auxiliary transform instead of
the more extended TV. This decision is again in the spirit of
choosing a sparsity model that is better suited to the particular
case of cardiac cine. Higher sparsity enables more accurate CS
reconstruction, so using ∇t as an auxiliary sparsity transform
instead of TV provides a better sparsity model on which to
rely. This additional term on the model was shown in [26] to
increase the performance of a similar algorithm designed for
the reconstruction of purely real-valued sequences.

IV. PROBLEM STATEMENT

The problem posed is to simultaneously find a solution
dataset x ∈ CP such that its real and imaginary parts <(x)
and =(x) are sparsely represented with the same real-valued
dictionary D, which is to be learnt. Additionally, we penalise
solutions for which ‖∇t|x|‖1 is large and favour those that are
overall consistent with the m k-space acquisitions x̂u. This is a
similar approach as that in [25], but instead of using 2D spatial
dictionaries we use 3D spatio-temporal dictionaries and further
exploit temporal redundancy in cardiac cine with an auxiliary
temporal gradient constraint.

Let us define as Ri ∈ Rn×P an operator that extracts as
a column vector the 3D patch in the dataset starting from
pixel location i and wraps around volume boundaries. We use
Γ< and Γ= to denote the sparse coding of <(x) and =(x)
respectively, where each column γ<,i or γ=,i is the coding
of patch Ri<(x) or Ri=(x). Throughout the description we
assume that the step size for patch extraction is 1, meaning
that i = 1, ..., P and that each pixel in x is represented by n
different patches.

The problem can be expressed as the following global
statement:

min
D,Γ<,Γ=

x

P∑
i=1

(
‖γ<,i‖0 + ‖γ=,i‖0

)
+ ν‖MFx− x̂u‖22

+ µ‖∇t|x|‖1

s.t.

{
‖Ri<(x)−Dγ<,i‖22 < ε ∀i
‖Ri=(x)−Dγ=,i‖22 < ε ∀i

. (3)

This optimisation problem is non-convex, so we opt to split
it into three simpler subproblems that are either convex or
can efficiently be solved with greedy methods. Alternating
the solution of these three subproblems iteratively will yield
an approximation to problem (3). Without modification, we
introduce an auxiliary variable xTG and write

min
D,Γ<,Γ=

x,xTG

P∑
i=1

(
‖γ<,i‖0 + ‖γ=,i‖0

)
+ ν‖MFx− x̂u‖22

+ µ‖∇t|xTG|‖1

s.t.


‖Ri<(x)−Dγ<,i‖22 < ε ∀i
‖Ri=(x)−Dγ=,i‖22 < ε ∀i
x = xTG

. (4)

Then, the new constraint is relaxed and included as a
quadratic penalty term:

min
D,Γ<,Γ=

x,xTG

P∑
i=1

(
‖γ<,i‖0 + ‖γ=,i‖0

)
+ ν‖MFx− x̂u‖22

+ µ‖∇t|xTG|‖1 + β‖x− xTG‖22

s.t.

{
‖Ri<(x)−Dγ<,i‖22 < ε ∀i
‖Ri=(x)−Dγ=,i‖22 < ε ∀i

. (5)

There are four tuning parameters in (5): ν, µ, β and ε. These
control respectively the consistency with the acquired k-space
samples, the temporal gradient sparsity of the dummy variable
xTG, the distance of the result x with respect to this dummy
variable, and the representation accuracy of D, Γ< and Γ=.
The last parameter is inversely related to the sparsity allowed
in the dictionary representation.

Even though phase information is relevant for applications
such as flow measurement, in cardiac cine as in other structural
MRI modalities, the information of most interest is normally
provided by the magnitude part of the complex signal formed.
An appealing approach would therefore be to define the prob-
lem such that only a magnitude sequence |x| is reconstructed
discarding the reconstruction of its phase information. This is
simpler than the problem posed in (5) because the number of
unknowns is reduced by a half and the system of equations
becomes better determined, which is why some solutions
proposed have adopted this approach [26], [27]. However, this
problem statement overlooks the nature of the observed data
x̂u. The samples acquired in k-space always correspond in
practice to a complex image, so trying to infer the k-space of a
magnitude signal from an undersampled version of its complex
representation is not a viable option. The reconstructed x has
to be complex-valued regardless of the clinical usefulness of
its magnitude and phase information.

V. DLTG ALGORITHM

Problem (5) is broken down into three simpler subproblems.
The DLTG algorithm iteratively refines a solution in three
separate steps that each solve the global problem with some
free variables fixed.

A. Dictionary training and sparse coding

Begin by assuming x and xTG fixed. The only free variables
are D, Γ< and Γ=. In words, we seek the dictionary and sparse
codings that will represent both sparsely and accurately the
real and imaginary parts of the dataset, or formally
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min
D,Γ<,Γ=

P∑
i=1

(
‖γ<,i‖0 + ‖γ=,i‖0

)
s.t.

{
‖Ri<(x)−Dγ<,i‖22 < ε ∀i
‖Ri=(x)−Dγ=,i‖22 < ε ∀i

. (6)

This is the general dictionary learning problem, where the
training data are patches Ri<(x) and Ri=(x). The K-SVD
algorithm [39] can solve (6). This DL algorithm is capable
of learning an overcomplete basis that can sparsely repre-
sent the underlying structure from corrupted measurements
by iteratively solving for one of the two free variables at
a time. It was originally proposed as a learning method
for denoising [22] to provide an overcomplete frame that
approximates the desired signal sparsely contrary to its added
noise. For an undersampling mask providing sufficient aliasing
incoherence, aliasing will have noise-like properties that the
trained dictionary will not be able to approximate with a sparse
representation either. Therefore, a sparse approximation of the
corrupted sequence x using the outcome dictionary from (6)
will tend to reproduce anatomical structure and miss features
derived from aliasing.

In practice, a reduced number of patches are used as
training data for efficiency purposes. For the description of
the algorithm, we will refer to the group of training patches
as xT , which will be a collection of M patches chosen from
a regular grid on <(x) and =(x). Their sparse representation
will be denoted as ΓT . Once a dictionary D has been learnt
from the training set, it can be used to code real and imaginary
parts of the entire dataset independently with OMP:

min
Γ<

P∑
i=1

‖γ<,i‖0 s.t. ‖Ri<(x)−Dγ<,i‖22 < ε ∀i, (7)

min
Γ=

P∑
i=1

‖γ=,i‖0 s.t. ‖Ri=(x)−Dγ=,i‖22 < ε ∀i. (8)

Assuming patches are one pixel away from each other in
the three dimensions and that they wrap around edges of the
sequence, each pixel will be represented by n different coded
patches.

B. Temporal gradient filtering

Let us fix now variables D, Γ<, Γ= and x, and minimise
the functional with respect to xTG. The problem becomes

min
xTG

‖∇t|xTG|‖1 + η‖x− xTG‖22, (9)

with η = β/µ. The magnitude of the dummy variable xTG
is driven towards sparsity in its temporal gradients while
minimising the quadratic distance with respect to solution x.
The phase difference between x and xTG will not alter the
first term in (9), so we set xTG = x and solve

min
|xTG|

‖∇t|xTG|‖1 + η‖|x| − |xTG|‖22. (10)

This can be very efficiently solved by the primal-dual
method in [40] with an iterative clipping algorithm. Specif-
ically, the following two computations are iterated:

|xTG|(r+1) = |x| − ∇T
t z(r), (11)

z(r+1) = clip

(
z(r) +

1

α
∇t|xTG|(r+1),

1

2η

)
, (12)

for r ≥ 0, z(0) = 0 and α ≥ maxeig(∇t∇Tt ). For details on
the derivation of this algorithm we refer to [40].

C. Data consistency

The last subproblem looks at the case where x is the only
free variable. Equation (5) now becomes

min
x
‖MFx− x̂u‖22 +

β

ν
‖x− xTG‖22

s.t.

{
‖Ri<(x)−Dγ<,i‖22 < ε ∀i
‖Ri=(x)−Dγ=,i‖22 < ε ∀i

. (13)

This can be rewritten as the following unconstrained opti-
misation problem:

min
x

P∑
i=1

(
‖Ri<(x)−Dγ<,i‖22 + ‖Ri=(x)−Dγ=,i‖22

)
+ ν′‖MFx− x̂u‖22 + β′‖x− xTG‖22. (14)

Referring to this functional as f , the optimum solution is the
one for which ∂f

∂<(x) = ∂f
∂=(x) = 0. Let us simplify the notation

using Fu = MF as the undersampled Fourier operator, and
solve ∂f

∂<(x) = 0:

(
P∑
i=1

RT
i Ri + ν′FH

uFu + β′

)
<(x)

=

P∑
i=1

RT
i Dγ<,i + ν′FH

u<(x̂u) + β′<(xTG). (15)

Taking the Fourier transform on both sides of (15), we have

(
F

P∑
i=1

RT
i RiF

H + ν′FFH
uFuF

H + β′FFH

)
F<(x)

= F

P∑
i=1

RT
i Dγ<,i + ν′FFH

u<(x̂u) + β′F<(xTG),

(16)

which yields the solution k-space of the real part of x:

F<(x) =
F
∑P
i=1 RT

i Dγ<,i + β′F<(xTG) + ν′FFH
u<(x̂u)

F
∑P
i=1 RT

i RiFH + β′FFH + ν′FFH
uFuFH

.

(17)
Replacing < by = in (17) we obtain the solution for the

k-space of the imaginary part, hence we can write the k-space
solution of x (using notation j =

√
−1) as:
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x̂ =
F
∑P
i=1 RT

i D(γ<,i + jγ=,i) + β′FxTG + ν′FFH
u x̂u

F
∑P
i=1 RT

i RiFH + β′FFH + ν′FFH
uFuFH

.

(18)
To better understand this expression we can use the fol-

lowing simplifications. The term FFH
u x̂u is the zero-filled

k-space acquisition which will be denoted as x̂z . Assuming
patches overlap and that the operator Ri wraps around the
boundaries such that each pixel is represented by n patches,
the term F

∑P
i=1 RT

i RiF
H is simply the weighted P × P

identity matrix nIP . Moreover, FFH
uFuF

H is equivalent to
a P × P diagonal matrix containing a 1 in the diagonal
whenever a k-space location was acquired or a 0 otherwise.
The simplifications x̂TG = FxTG and IP = FFH are
trivial, and also notice that the expression F

∑P
i=1 RT

i Dγi

n
represents the Fourier transform of the solution obtained by
averaging the contribution of all coded patches relocated to
their corresponding position within the dataset. For simplicity
we refer to this solution as xDL, and x̂DL is its Fourier
representation. The final expression for x̂ is therefore

x̂(k) =


x̂DL(k) + β′

n x̂TG(k) + ν′

n x̂z(k)

1 + β′

n + ν′

n

, k ∈ Ω,

x̂DL(k) + β′

n x̂TG(k)

1 + β′

n

, k /∈ Ω.

(19)

The update of solution x involves an average between the
dictionary sparse solution x̂DL, the temporal gradient sparse
solution x̂TG, and the original acquisitions x̂z for k-space
locations that were acquired. This means that this step requires
the tuning of parameters ν′ and β′. To simplify this task, in
the implementation of the algorithm we choose to update x̂
using only x̂z and either x̂DL or x̂TG with a single constant λ
depending on which solution was updated last. Equation (19)
then becomes

x̂(k) =


x̂′(k) + λx̂z(k)

1 + λ
, k ∈ Ω,

x̂′(k), k /∈ Ω,
(20)

with x̂′ alternating between x̂DL and x̂TG. Noise standard
deviation is taken into account by the regularisation parameter
λ = q/σ, where q is a constant that can be set empirically as
is shown in section VI-C.

D. Algorithm design

Fig. 2 describes the ordering in which these three steps
are performed in the DLTG algorithm. The data consistency
step is interleaved between the other two steps and the TG
module is iterated in an inner loop fashion to force a slow
and smooth convergence towards a result jointly satisfying the
sparse temporal gradient and the data consistency constraints.
Additionally, a Dictionary Learning MRI (DLMRI) version of
the method in which the TG term is ignored (equivalent to
setting β = β′ = 0) is also presented. Notice that this differs
from the DLMRI method presented in [25] in that real and

imaginary parts are coded independently with a real-valued
dictionary.

Fig. 2. Algorithm flowchart for DLTG (solid arrows) and the DLMRI (dashed
arrows) algorithms.

The algorithm is initialised with the zero-filled sequence xz
and the stopping criteria S1 and S2 can either be convergence
to a stable solution or a maximum number of iterations I1
and I2 for outer and inner loops respectively. All the results
below use small values for constants ε and η to ensure a
slow convergence towards a result tightly adhering to the
sparsity model imposed. We also use I2 = 10 and a large
number of outer iterations I1 > 100 to guarantee the end
result reaches a stable solution. The dictionary in the training
stage is initialised at each iteration with an overcomplete DCT
dictionary and coding matrices Γ< and Γ= are initially 0.

E. Algorithm complexity

The complexity of the DLMRI algorithm, which constitutes
the first half of the DLTG algorithm, is dominated by the
dictionary learning and sparse coding steps. The training of
the dictionary and sparse coding of patches are performed
using the efficient implementations of the K-SVD and Batch-
OMP algorithms made available by R. Rubinstein [41], [42]. In
both cases, the computation is dominated by the cost of sparse
coding a patch of size n with a dictionary of N atoms. The



CABALLERO et al.: DICTIONARY LEARNING AND TIME SPARSITY FOR DYNAMIC MR DATA RECONSTRUCTION 7

number of operations necessary for this can be described as a
function of OMP iterations L. The stopping criterion described
in section IV for sparse coding is the data consistency level ε,
and although the relationship between L and ε is non-trivial
because of its non-linearity, it is easily observed that a larger
ε implies fewer OMP iterations for a given problem.

Batch-OMP precomputes the matrix DTD to save pro-
cessing time when coding large sets of patches with the
same dictionary. This first step requires nN2 operations. The
coding of a real-valued patch that requires L OMP iterations
with Batch-OMP involves approximately 2nN + L2N + L3

operations [41]. Given that we code a total of P patches
twice for each dataset, we can provide the average number of
operations per dataset coding as nN2+2P (2nN+L̄2N+L̄3),
where L̄ is the average number of OMP iterations for coding
real and imaginary parts. Also, a K-SVD training iteration
will involve approximately M(2nN + L2N + L3) opera-
tions for L OMP iterations [41], so on average we have
ITM(2nN+L̄2N+L̄3) operations. The data consistency step
only involves two fast Fourier transforms per temporal frame
and averaging operations that are negligible compared to the
sparse coding step. The extra computation for solving (9) in
the DLTG case is also very small since only sparse matrix-
vector multiplications and clipping operations are required. In
section VI-G we provide empirical results on the runtime of
the algorithm.

VI. RESULTS

A. Experimental setup

Fully sampled short-axis cardiac cine scans were acquired
from 10 subjects for the analysis of the proposed method. All
datasets contain 30 temporal frames of size 256 × 256 (i.e.
P = 256× 256× 30) with a 320× 320 mm field of view and
10 mm slice thickness, and were generated using an optimal
combination of 32-channel data. For the 10 subjects the mean
± standard deviation for heart rate was 62± 10.2 bpm, with
the 30 frames giving a temporal rate of 33± 5.5 ms. The raw
multi-coil data was reconstructed using SENSE [43] with no k-
space undersampling and retrospective gating. Coil sensitivity
maps were normalised to a body coil image to produce a
single complex-valued image set that could then either be
back-transformed to regenerate complex k-space samples or
further processed to form final magnitude images.

These scans contain unavoidable k-space acquisition noise
and this formally preludes quantitative comparison between a
given reconstruction and the fully sampled dataset. Nonethe-
less, for the purposes of evaluation we will treat the fully
sampled data as ground truth (i.e. treat them as if noiseless).
To assess noisy scenarios we then artificially add noise to k-
space. The quality of all reconstructions x will be measured
with PSNR(x) = 10 log

(
1

‖xf−x‖22/P

)
, where xf denotes the

fully sampled dataset. For reconstructions without artificial
noise, visual inspection of magnitude and phase information
as well as the mean structural similarity index (MSSIM) [44]
will also be considered.

Throughout this section, fully sampled k-space data is
artificially subsampled using 2D binary undersampling masks

M ∈ Rm×P . We only consider the case of Cartesian under-
sampling, which is the most common in practice, although
more elaborate sampling strategies like radial or spiral [45],
[46] could be equally possible with modifications on the data
consistency step and using non-uniform Fourier transforms
[47]. Even though greater aliasing incoherence can be achieved
with 2D k-space undersampling [45], frequency encodes can
be considered instantaneous relative to phase encodes, so
acceleration is only meaningful through phase encode under-
sampling.

It has been claimed in the past that drawing independent
realisations of this random experiment for each temporal
frame significantly increases eddy currents. In [48], this issue
is remedied by pairing consecutive random phase encodes.
At each frame, the 8 lowest spatial frequencies are always
acquired and other frequencies have a probability of being
acquired determined by a Gaussian variable density function
that is marginally offset, such that the probability of acqui-
sition never reaches zero even at the highest frequencies. An
implementation of this approach can be found in [49], and an
example of a 2D mask and its effect on the magnitude of a
temporal frame is shown in Fig. 3 for a 6-fold acceleration.

Fig. 3. Example of a magnitude temporal frame from one of the datasets
analysed (a). The undersampling mask (b) applied in k-space reduces acqui-
sition time but introduces aliasing in image space (c).

The proposed method is compared to k-t FOCUSS [16] as
a representative algorithm of the CS dynamic MRI methods
using fixed bases sparsifying transforms. The implementation
of this algorithm is publicly available in [49]. A single regu-
larisation parameter can be tuned to trade between a k-space
data consistency term and an x-f domain sparsity term, and
even though this parameter cannot be optimally determined
a priori, we sweep across a large spectrum of values in all
experiments and only show the best reconstruction in order to
always compare to the best possible scenario.

In contrast, DLTG results are not optimised individually
and, unless otherwise stated, its parameters are kept constant
across all experiments. We use M = 104 patches of size
n = 4 × 4 × 4 to train dictionaries of N = 600 atoms
using IT = 10 K-SVD iterations. These parameters were
chosen based on empirical tradeoffs between performance and
efficiency. The regularisation parameters are ε = 0.007 and
η = 4 × 10−4, which allows to analyse the potential of the
model by tightly adhering the result to it as will be shown in
section VI-G.

B. Reconstruction of individual datasets
The first experiment considers the simple case where

datasets are undersampled and reconstructed with different
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acceleration factors without added noise. Fig. 4 plots the mean
PSNR of the reconstructions and one standard deviation away
from them against the acceleration factor for the 10 subjects
considered. For this particular case, the noise regularisation
factor is set to λ → ∞, such that in the DLMRI and DLTG
algorithms all k-space samples that are acquired are constantly
fed back to the reconstruction’s k-space in the data consistency
step without any weighting.
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Fig. 4. Mean and standard deviation PSNR performance of reconstructions
from 10 scans retrospectively undersampled without added noise.
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Fig. 5. PSNR performance of different reconstructions evaluated only within
a ROI containing the heart.

Even though it is ideally optimised, The k-t FOCUSS
algorithm is clearly outperformed by the DLMRI and DLTG
algorithms for all sampling ratios. A further comparison made
in table I using the MSSIM metric [44] supports this con-
clusion. MSSIM can quantify structural similarity between

two images better than PSNR by comparing luminance and
contrast in patches. For our results we consider the mean
MSSIM of the 30 temporal frames in each dataset. Although
the standard deviations of the PSNR and MSSIM results are
relatively large, the rank order for both figures of merit for
the three methods and for each individual reconstruction was
DLTG>DLMRI>k-t FOCUSS.

TABLE I
MSSIM COMPARISON (MEAN ± STD ) ×10−2

Sampling factor k-t FOCUSS DLMRI DLTG
0.25 95.8 ± 2.5 97.3 ± 0.8 97.4 ± 1.0
0.16 93.9 ± 3.4 96.2 ± 0.9 96.5 ± 1.1
0.12 91.4 ± 6.0 95.0 ± 1.1 95.5 ± 1.1
0.10 89.9 ± 5.4 93.3 ± 1.6 94.4 ± 1.3
0.08 86.2 ± 6.3 91.2 ± 1.8 93.1 ± 1.3
0.06 80.5 ± 7.4 87.7 ± 3.0 91.0 ± 1.4

The improvement with respect to k-t FOCUSS is also
evident from the visual comparison shown in Fig. 6 of a frame
from a dataset that has been accelerated by 8. It is nevertheless
harder to visually identify the benefit of enforcing TG sparsity
in DLTG relative to the DLMRI method. To better understand
in what way the TG term modifies the solution of DLMRI, we
compare in Fig. 5 the same measure when only a region of
interest (ROI) around the heart is considered. An example of
this ROI is shown in Fig. 6(a) for one of the scans considered.
For this region, reconstruction performances of the DLMRI
and the DLTG algorithms are almost the same except at very
high acceleration rates.

A visual comparison of the dataset profile in Fig. 8 along
the horizontal dashed line of Fig. 6(a) can help explain this
finding. The DLTG method slightly smooths the reconstruction
out along time in regions of high motion as a result of
the TG sparsity enforcement. A small improvement can be
appreciated in the static regions outside the ROI (see arrow
A), which is part of the reason for the improvement in the
global PSNR and MSSIM metrics. We could argue that down
to sampling ratios of 0.12, the DLMRI method is already able
to recover a faithful representation of the signal and therefore
imposing an extra sparsity penalty is liable to distort the
solution undesirably (see arrow B). However, this behaviour
is only occasionally perceived and at high acceleration factors
the improvement in the reconstruction quality is evident inside
and outside the ROI as is shown in Figs. 4 and 5.

Extremely low sampling factors inevitably degrade the
results and are a difficult regime in which to carry out a
CS based reconstruction, but they force the algorithm to rely
heavily on the sparsity model it assumes from the data and
can help analyse its suitability. Fig. 7 shows the reconstruction
comparison with an acceleration rate of 15, which is the lowest
sampling factor tested. Although fine details are lost with the
three methods compared, the DLTG method overall provides
the most satisfactory reconstruction. The k-t FOCUSS solution
contains a lot of aliasing artefacts even though its optimal
sparsity model was unrealistically optimised a posteriori. The
DLMRI method presents a more blocky reconstruction and
distorts the natural shape of the heart especially around the
myocardium. The DLTG method also contains blocky arte-
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Fig. 6. Visual comparison of a fully sampled magnitude frame (a), its
undersampled by 8 zero-filled version (b), and reconstructions using k-t
FOCUSS (c), DLMRI (e) and DLTG(g) with their respective errors multiplied
by 6 (d, f, h).

facts, but it noticeably eliminates aliasing and preserves the
coarse structure of the original frame.

Fig. 9 compares the temporal profile of the reconstruction
at an acceleration rate of 12. The k-t FOCUSS method is
not able to capture the dynamism well, and this is a direct
consequence of the sparsity model it uses. Sparsity in k-t
FOCUSS is imposed on the Fourier transform of pixels along
the temporal dimension. If the reconstruction relies heavily
on a reconstruction that is too sparse, it will only be able to
capture very coarse movement, but fine temporal details will be
missed as they are disregarded by the sparse model (see arrow
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Fig. 7. Visual comparison of a fully sampled magnitude frame (a), its
undersampled by 15 zero-filled version (b), and reconstructions using k-t
FOCUSS (c), DLMRI (e) and DLTG(g) with their respective errors multiplied
by 6 (d, f, h).

A). The DLMRI result is able to better recover fine temporal
changes, but contains a considerable amount of alias that is
unresolved (see arrow B). Using the additional TG penalty
removes the aliasing at the expense of slightly smoothing the
reconstruction along time, as shows the DLTG result. Despite
this, it is structurally the most faithful reconstruction out of
the comparison.

To conclude the analysis, we show in Fig. 10 the original
phase and the reconstructed versions of a temporal frame from
a dataset accelerated by 8. Except in locations where the
amplitude is very low and hence phase is unstable (masked
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out in the fully sampled case), the three reconstructions
are accurate. Quantitatively evaluating phase reconstruction
only is difficult because of the many random values when
magnitude is zero, but this is implicitly accounted for in Figs.
4 and 5.

Fig. 8. Temporal profile of row 120 in the original dataset (a), its
undersampled by 8 zero-filled version (b), and reconstructions using k-t
FOCUSS (c), DLMRI (e) and DLTG (g) with their respective errors amplified
by 6 (d, f, h).

Fig. 9. Temporal profile of row 120 in the original dataset (a), its
undersampled by 12 zero-filled version (b), and reconstructions using k-t
FOCUSS (c), DLMRI (e) and DLTG (g) with their respective errors amplified
by 6 (d, f, h).

C. Reconstruction with AWG noise

This section analyses the impact of acquisition noise in
reconstruction performance. The acquired undersampled data
can be described as x̂u = M(Fxf + n) where n ∈ CP is

Fig. 10. Phase reconstruction comparison in a scan accelerated by 8 of the
original data (a) and the reconstructions provided by k-t FOCUSS, DLMRI
and DLTG (b, c, d)

complex circular AWG noise of power σ2. The value of the
noise regularisation parameter λ = q/σ in the data consistency
step of the DLMRI and DLTG algorithms now plays an
important role.

In Fig. 11(a) we plot the dependence of the reconstruction
quality on parameter q at a sampling factor 0.25. The different
input noise values displayed are represented as PSNRf , which
corresponds to the PSNR of the IFFT reconstruction of fully
sampled data corrupted by noise. In terms of absolute noise
power, PSNRf = {25.8, 31.8, 35.8, 41.8} dB is equivalent to
σ2 = {4×10−8, 10−8, 4×10−9, 10−9}. The constant q was set
to 5×10−6 and 5×10−5 for the DLTG and DLMRI algorithms
respectively based on these results. The same empirical value
was found for q in other tests independent of the patch and
dataset sizes. For high noise values (PSNRf ≤ 31.8 dB) a
fine tuning of this constant is desirable as the reconstruction
depends heavily on it, but for lower noise values results are
not very sensitive to it.

We plot in Fig. 11(b) the reconstruction performance as a
function of PSNRf for a scan accelerated by a factor of 4.
The same rank order between the three methods is preserved
in this test, and both methods using DL present a milder decay
of performance at high noise values than k-t FOCUSS. The
main reason for this improved robustness can be attributed to
the denoising capabilities that have been demonstrated by the
K-SVD algorithm. Sparse coding with a trained overcomplete
dictionary and averaging overlapping patches is a powerful
method to denoise natural images [22]. The visual comparison
for PSNRf = 25.8 dB in Fig. 12 shows how the k-t FOCUSS
reconstruction is much more contaminated by noise than the
dictionary based reconstructions. Notice that the performance
decay at high noise values shown in [26] of DLTG compared
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to DLMRI is not experienced here. This is because in the
present work parameter q is optimised independently for both
methods.
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Fig. 11. Algorithm evaluation with added noise. Reconstruction sensitivity
to noise power and parameter q for a scan accelerated by 4 (left) using the
DLTG (solid) and DLMRI (dashed) algorithms, and their robustness to input
noise (right).

D. Spatial dictionaries

The main objective of this work is to analyse the potential
of using spatio-temporal dictionaries for dynamic data instead
of independently reconstructing temporal frames with a 2D
(spatial) dictionary. In cardiac cine, the temporal dimension
is known to be highly redundant as changes through time are
slow and confined to specific regions of the image. Hence, a
sparsity model that exploits this temporal redundancy can be
expected to perform better than one that disregards it.

Fig. 13 visually compares the reconstruction of a 6-fold
accelerated dataset using the DLMRI algorithm with a spatio-
temporal and a spatial dictionary. The reconstruction using a
spatio-temporal dictionary shows much better dealiasing prop-
erties whereas the reconstruction using the spatial dictionary
has unresolved aliasing and an important loss of structure. The
PSNR metric was 38 dB and 27 dB for the spatio-temporal
and spatial dictionary reconstruction respectively. The tempo-
ral profiles also demonstrate a more accurate reconstruction
with the spatio-temporal dictionary. Particularly, the spatial
dictionary reconstruction shows a blocky structure that is less
consistent across time in terms of both structure and contrast,
which is a consequence of reconstructing temporal frames
independently.

E. Real and complex-valued dictionaries

The use of real-valued dictionaries is a main difference with
respect to previous work on dictionary learning for MRI. In
[25], [32], a complex-valued dictionary is trained which is then
used to sparsely code complex-valued data. The DLTG algo-
rithm instead trains a real-valued dictionary to sparsely code
real and imaginary parts of the data independently. Although
training a real-valued dictionary is not expected to outperform
a complex-valued dictionary, it is worth understanding the
differences between these two strategies.

We look at the error that is produced on a fully sampled
dataset when these two different sparsity models are used to
approximate it. In Fig. 14, we compare the average error per
patch when a scan is coded using a maximum of L atoms
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Fig. 12. Visual comparison of the reconstructions from a scan accelerated by
4 that has been contaminated by complex noise with input PSNRf = 25.8
dB (a) using k-t FOCUSS (c), DLMRI (e) and DLTG (g) with their respective
errors multiplied by 6 (d, f, h).

from different dictionaries. It is difficult to portray a balanced
comparison as the l0 norm is different for a complex and a
real-valued dictionary. The complex-valued dictionary allows
for complex-valued sparse representations, meaning that the
coding of a patch can use L atoms from the dictionary and
their phase can be rotated. This allows for 2L degrees of
freedom in the sparse representation. On the other hand, the
coding using a real-valued dictionary uses L atoms for the
real part of a patch and another independent L atoms for the
imaginary part, hence matching the 2L degrees of freedom of
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Fig. 13. Comparison of 2D spatial and 3D spatio-temporal reconstruction.
Shown are a fully sampled frame (a), its undersampled by 6 zero-filled version
(b), and the spatio-temporal (c) and spatial only (d) reconstructions. Figs. e,
f and g are the temporal profiles along the dashed line of datasets a, c and d
respectively.

the complex-valued dictionary strategy.
Notice that, out of the dictionaries of N = 300 atoms,

using a real-valued dictionary entails a slightly smaller average
error. This could be explained by the fact that the real-valued
dictionary allows the independent representation of real and
imaginary parts of a patch, whereas the complex-valued one
reconstructs them jointly. Combinatorially, the representation
capabilities are higher for the real-valued dictionary, meaning
that using this strategy could be a more flexible solution. Its
performance can only be matched by the complex-valued strat-
egy if the overcompleteness of the dictionary is increased. The
example using N = 600 supports this explanation by showing
a smaller error with a larger complex-valued dictionary. This
difference is nevertheless very small and does not seem to
impact the reconstruction process noticeably.

F. Parameter selection

The choice of algorithmic parameters is crucial for a suit-
able operation of the DLTG algorithm. The plots in Fig. 15
show the influence of the dictionary and patch size in the
reconstruction performance of a scan accelerated by 6. In
Fig. 15(a) the patch size was kept at n = 4 × 4 × 4 and
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Fig. 14. Average error per patch produced by the assumption of L sparsity
on a fully sampled scan using different dictionaries.

in Fig. 15(b) the dictionary size was fixed at N = 600.
The quality of the reconstruction is comparable in the broad
range of values tested except for very large patch sizes. These
tend to oversmooth the result missing out on fine details,
which deteriorates the performance. It is also noticeable that
above a certain dictionary overcompleteness, there is little
improvement in using larger dictionaries.
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Fig. 15. Influence of dictionary size (left) and patch size (right) on the
reconstruction of a scan accelerated by 6.

G. Algorithm convergence, speed and acceleration

The intermediate convergence of terms in the global state-
ment is summarised in Fig. 16 for an example reconstruction
of a 6-fold accelerated scan. Although the convergence of the
DTLG algorithm is still to be proven, all the tests undergone
showed convergence to a stable result.

The convergence rate, algorithm speed and reconstruction
performance is largely dominated by the data consistency
parameter ε. A large ε permits larger discrepancy between
training and coding patches, which can be achieved with very
few atoms of the dictionary using a very sparse representation.
This means that few OMP iterations are needed both for
training and coding and the computational load is small.
However, the quality of a reconstruction with this parameter
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can be expected to be low as it will not be closely matched to
the target dataset. On the other hand, a small ε requires a larger
number of dictionary atoms to represent each training and cod-
ing patch, which slows down each OMP routine. Nonetheless,
this is necessary to tightly adhere the reconstruction to the
model and the observed dataset, which is what will ensure
near optimal reconstruction.

This behaviour is illustrated in Fig. 17(a), where the re-
construction performance of a 6-fold accelerated dataset is
evaluated in terms of PSNR and convergence rate for different
values of ε. Fig. 17(b) shows the time needed for one coding
step of the entire dataset (both real and imaginary parts), which
is the most demanding step in the algorithm. Matlab R2011b
was used for this assessment of the runtime on an Intel Core
i7-2600 CPU at 3.4 GHz and 8 GiB of memory. The C++
implementation of K-SVD provided by Ron Rubinstein in [42]
was used for the Batch-OMP stages.

Fig. 17 allows for an empirical assessment of the global
runtime of the entire reconstruction. For instance, most of
the results shown in this work were obtained with ε =
0.007, which translates into a coding stage of 200 s, and
the reconstruction in Fig. 17(a) took about 120 iterations
to converge. The bulk of the computation therefore required
200×120/3600 = 6.6 h. Notice that there is nevertheless a lot
of flexibility in the speed of the algorithm, as using ε = 0.01
would reduce this time to 110 × 75/3600 = 2.3 h without
much compromising the end result.
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The use of temporal gradient sparsity in DLTG also has
an important impact on the convergence rate compared to
the DLMRI version. Fig. 18 shows the convergence of a
10-fold accelerated scan in terms of DLMRI iterations and

DLTG outer iterations. Two settings are compared for each
algorithm, a slow one using ε = 0.007 and η = 4 × 10−4,
which are the values used for all the results shown above,
and a faster but less performant one using ε = 0.07 with
η = 0.004. The enforcement of temporal gradient sparsity in
DLTG accelerates the process considerably. The reason for this
is that the TG transform is able to reduce aliasing from a global
perspective in a way that is unfeasible using only the patch
based approach of the DLMRI algorithm. More specifically,
the high temporal gradient complexity that independent masks
produce in consecutive frames is highly penalised by this
auxiliary sparsity term.
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There is a large difference between these runtimes and the
average 15 seconds required for a k-t FOCUSS reconstruction.
Possible acceleration techniques are under review. From the
behaviour observed in Figs. 17(a) and 18, it seems natural to
seek optimal trajectories for the data fidelity terms ε and η
such that they start as large values benefiting from fast initial
convergence, and are dynamically decreased as the algorithm
converges to a stable solution to reach high reconstruction
quality. This is a very simple addition that can reduce the
total runtime considerably. Decreasing patch sizes and their
overlap would also accelerate the algorithm although this could
noticeably compromise the end result.

A very appealing modification would be to design a parallel
implementation of the 2P sparse coding steps necessary in
each iteration of the algorithm, given that they are com-
pletely independent from each other. This would dramatically
decrease the runtime, because they are the most expensive
processing blocks in terms of computation, and would not
affect the quality of the reconstruction.

H. Influence of training data

The algorithm’s behaviour depends on the data chosen for
dictionary training. The previous results were computed with
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online learning of a dictionary using patches from the target
scan. Fig. 19 shows an example of 20 atoms of the spatio-
temporal dictionary trained in the last iteration of the DLTG
reconstruction in Fig. 6. These look very different from the
initial structured DCT dictionary. Some show coarse edges
in different directions (atoms 5, 7, 8) whereas others do
not have a significant structure and are necessary to capture
image details (4, 10, 12). Furthermore, some contain temporal
dynamism (1, 3, 20) while others are relatively static (5, 8,
11).

t = 1
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t = 2 t = 3 t = 4

2

3

4

5

6

7

8

9
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11
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Fig. 19. Examples of spatio-temporal patches learnt in the last iteration
of the 8-fold accelerated DLTG reconstruction shown in Fig. 6. Patches are
4× 4× 4 patches and are displayed as sequences of spatial patterns for each
time frame.

The strategy for dictionary training can also have an im-
pact on the acceleration of the algorithm. Training can be
performed offline taking advantage of the large amounts of
available high quality medical data. This could be thought of
as counterproductive since the aim is to tailor the dictionary
to the dataset being reconstructed, and not to a prior scan
that could come from a different patient. However, the K-
SVD method generally learns coarse features of the data, so
if different training datasets are used which are similar to the
target dataset in a patch scale, they should provide a similar
learning performance.

Table II shows the PSNR quality of reconstructions at
accelerations 4, 6 and 8 using different training datasets with
ε = 0.01. The comparison looks at the initial DCT dictionary
without training, the dictionary trained online on the target
scan, a dictionary trained offline on the fully sampled target
scan, and an offline training on a fully sampled scan from
a different subject. As expected, the initial DCT dictionary
always provides the worst reconstruction quality and the
best one is given by the fully sampled training data on the
target scan. Notice however that training data coming from a

different cardiac scan can be used to train a dictionary offline
and closely approximate the performance of training on the
true data.

TABLE II
TRAINING DATA INFLUENCE WITH ε = 0.01 - PSNR (dB)

Sampling factor
Training data 0.25 0.16 0.125

DCT (no training) 38.86 36.78 35.22
True (online) 39.20 37.09 35.66
True (offline) 39.20 37.12 35.66

Different - 1 scan (offline) 39.20 37.09 35.65

Table III presents the same comparison using ε = 0.007.
In this regime, the dictionary is forced to very accurately
represent the training data, so the tailoring to a particular scan
during training is accentuated. Offline training on a different
scan performs slightly worse than using the target scan, but
still better than the initial DCT dictionary.

TABLE III
TRAINING DATA INFLUENCE WITH ε = 0.007 - PSNR (dB)

Sampling factor
Training data 0.25 0.16 0.125

DCT (no training) 39.8 37.3 36.2
True (online) 40.1 38.0 36.7
True (offline) 40.1 37.8 36.7

Different - 1 scan (offline) 39.9 37.6 36.5

It is important to note that, although dictionary training
enhances the reconstruction quality, this increase is relatively
small and sometimes might not be noticeable visually. These
results are in accordance with the comparisons shown in K-
SVD denoising [22], [33], where dictionary training rarely
improves PSNR by more than 0.5 dB. The additional com-
putation necessary for training offline, and most importantly
online, should be taken into account and questioned as being
necessary or not depending on whether the improvement it can
bring is clinically relevant.

To conclude, we show in table IV the influence of the
initial dictionary when reconstructing with online training.
The test compares a DCT initial dictionary, with one that is
initialised with random patches from the data and another that
is filled in with independent and identically distributed (IID)
Gaussian samples. The DCT initial dictionary provides the best
reconstruction whereas the random IID Gaussian initialisation
performs noticeably worse. This is probably because, although
the DCT dictionary is not tailored to a scan, it is still able
to provide a sparse representation of it in the first iteration
of each dictionary training step, facilitating the task of the
K-SVD algorithm. The IID Gaussian initialisation will most
probably not find a sparse representation of the training data,
and this deteriorates the behaviour of K-SVD learning.

TABLE IV
DICTIONARY INITIALISATION - PSNR (dB)

DCT Data IID Gaussian
38.0 37.6 36.2
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VII. CONCLUSION

We have presented an algorithm for the acceleration of
dynamic MRI acquisition based on a sparsity model that can
learn redundancy in the data and an auxiliary constraint on
TG sparsity that helps speed up convergence and provides
better results at high acceleration rates. The method was tested
on data from 10 subjects and provided superior performance
in every case. There were no failures and no gross errors.
The reconstruction of complex-valued MR data was performed
by splitting real and imaginary parts of the sequences and
coding them with a single real-valued dictionary. The method
proposed is shown to largely outperform the k-t FOCUSS
algorithm, which supports a conclusion that a patch based
reconstruction has greater potential than global sparsity trans-
forms because they allow higher sparsity representations.
Adapting the dictionary to training data can also enhance the
reconstruction, although the increase in performance is usually
modest.

The use of spatio-temporal dictionaries has proven to have
a major advantage with respect to spatial dictionaries in
reconstructing cardiac cine data. Imposing sparsity constraints
on spatio-temporal patches has two beneficial properties. First,
the temporal dimension is expected to be highly redundant
in this kind of information, so if it is included in the spar-
sity model we can expect to create a better scenario for a
compressed sensing reconstruction. Secondly, coding spatio-
temporal patches implicitly enforces structural and intensity
homogeneity across time, which can correct much of the
aliasing that spatial dictionaries cannot handle.

Another important finding presented is the influence that the
training has upon the reconstruction. It has been shown how
dictionary training enhances the reconstruction with respect
to an initial DCT dictionary, but this increase in quality is
very limited. This is the same conclusion that could be drawn
from the original K-SVD results on denoising [22], [33].
Considering the computational overload that online dictionary
training entails, it could be regarded as unnecessary if the re-
construction improvements are barely noticeable to the human
eye. Nevertheless, we have also seen how offline training on
a dataset from a different patient and with the same imaging
setup could provide almost identical results to online training,
and this is a viable option that would benefit from the increase
in reconstruction quality while keeping the computation cost
for training separate from the online runtime.

Future work will aim at extending the method presented
such that its practical implementation is made efficient. On
top of adding modifications that will accelerate the rate of
convergence without degrading the reconstruction quality, the
combination of a DL based sparsity model and a parallel MRI
reconstruction might have a considerable potential. Currently,
joint CS and parallel MRI reconstruction strategies are the
ones that provide the best acquisition acceleration results,
but only fixed bases sparsity transforms have so far been
explored. One could hope that adaptive sparsity transforms
would outperform them just like the method described here
does with its CSMRI counterpart.
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