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Abstract

Magnetic resonance (MR) imaging is an invaluable tool for medical research and diagnosis but

su↵ers from ine�ciencies. The speed of its acquisition mechanism, based on sequentially prob-

ing the interactions between nuclear atom spins and a changing magnetic field, is limited by

atomic properties and scanner physics. Modern sampling techniques termed compressed sensing

have nevertheless demonstrated how near perfect reconstructions are possible from undersam-

pled, accelerated acquisitions, showing promise for more e�cient MR acquisition paradigms.

At the same time, information extraction from MR images through image analysis implies a

considerable dimensionality reduction, in which an image is processed for the extraction of a

few clinically useful parameters. This signals an ine�cient handling of information in the sepa-

rated treatment of acquisition and analysis that could be tackled by joining these two essential

stages of the imaging pipeline.

In this thesis, we explore the use of adaptive sparse modelling for novel acquisition strategies

of cardiac cine MR data. Conventional compressed sensing MR acquisition relies on fixed basis

transforms for sparse modelling, which are only able to guarantee suboptimal sparse modelling.

We introduce spatio-temporal dictionaries that are able to optimally adapt sparse modelling

by absorbing salient features of cardiac cine data, and demonstrate how they can outperform

sampling methods based on fixed basis transforms. Additionally, we extend the framework

introduced to handle parallel data acquisition. Given the flexibility of the formulation, we

show how it can be combined with a labelling model that provides a segmentation of the image

as a by-product of the reconstruction, hence performing joint reconstruction and analysis.
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Chapter 1

Introduction

Magnetic resonance imaging (MRI) is today an indispensable tool for medical diagnosis and

research. Its success can largely be explained by the detailed soft tissue contrast it provides and

by the great flexibility enabled by its acquisition mechanism [19, 145]. Moreover, and contrary

to other established imaging modalities, MRI is non-ionising and non-invasive. However, its

acquisition mechanism and image analysis pipeline pose a number of e�ciency challenges that

once tackled could make acquisitions with this imaging modality shorter, cheaper and more

comfortable. The sampling enabled by a magnetic resonance (MR) scanner is sequential, and

the rate at which data can be collected is limited by physical and physiological constraints.

The budget for data sampling is particularly tight for dynamic scans such as in cardiac cine

image acquisition, where spatial and temporal sampling requirements present a fundamental

compromise.

In this thesis, we explore the use of adaptive sparse modelling for novel acquisition strategies

of cardiac cine MR data. Building upon methods that propose sparse modelling for the recon-

struction of data sampled at sub-Nyquist rates, we experiment with patch-based approaches

which are able to optimally adapt sparse modelling for a particular dataset. Additionally,

we extend the framework introduced to allow for parallel data acquisition and to provide an

analysis of the image as a by-product of the reconstruction. In the remainder of this chapter,

1



2 Chapter 1. Introduction

we expose the challenges addressed by this thesis, as well as the objectives and contributions

expected.

1.1 Challenges in MRI acquisition and analysis

The flexibility of the MR acquisition process has allowed producing images of di↵erent body

regions, and to tune acquisition parameters for the enhancement of di↵erent tissue attributes.

A brief illustration of the diversity of MR images is shown in figure 1.1, ranging from structural,

to functional and dynamic imaging.

(a) Structural (brain) (b) Structural (knee) (c) Functional (brain) (d) Cardiac cine

Figure 1.1: Examples of MR image modalities. Structural MR for brain (a) and knee (b) are
static scans and functional brain MR (c) and cardiac cine (d) are dynamic modalities.

However, the current state of scanners and the established approaches to image processing

make the acquisition and analysis of the examples shown ine�cient. First, the sequential

nature of MR acquisition limits the speed at which data can be collected. Furthermore, the

images illustrated are often not an end in the imaging pipeline, but rather a means to obtain

clinically useful information through post-processing stages. Also, the processing of medical

images without the use of knowledge from past example cases implies a waste of resources given

the amount of MR information produced every day. We detail below these three ine�ciencies

of current MR procedures, which we identify as challenges to be addressed in this thesis.
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1.1.1 Acquisition speed

The production of MR signals relies on a physical mechanism imposing that the targeted body

region is scanned along a trajectory in a sequential fashion. This is an ine�cient strategy for

data sampling which translates into inherently slow scanning procedures. It is particularly

problematic in dynamic scans where the signal is acquired both in space and time and the

resolution budget to be shared among both domains is rigidly constrained. One example of

interest is cardiac cine imaging, which allows the imaging of the beating heart and is crucial

for the prevention, diagnosis and treatment of cardiovascular diseases.

Despite the notable advances in MR hardware design with parallel coils, reducing the acquisition

time of cardiac cine is still a challenging task, but a vast number of post-processing techniques

based on modern sampling concepts of compressed sensing (CS) have recently shown promising

potential to tackle this problem [86]. State-of-the-art developments, notably those combining

compressed sensing (CS) with parallel MRI, provide satisfactory results at acceleration factors

close to 8-fold [69, 85]. The approach considers the acquisition of only a fraction of the data

normally necessary for a scan, hence linearly reducing acquisition time, and imposes a sparsity

model onto the reconstruction to compensate for missing data.

An important drawback of this solution is the use of a priori assumptions which can sometimes

try to fit the reconstruction to inaccurate models. Fixed-basis transforms designed to provide

sparse representations for structured signals are popular for sparsifying spatial information

[84, 97, 1] and, for the special case of dynamic MRI, a Fourier transform along time has been

the preferred choice [86, 55, 69, 138]. However, it is generally agreed that not one single sparsity

model can optimally fit all signals, and despite the clear indications that the search for suitable

sparsifying bases is necessary, the focus has been on trying to develop better algorithms for

sub-optimal models rather than trying to redefine the model itself.
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1.1.2 Information extraction

MR images contain a large amount of data. In many cases, the utility of the image itself is

to support a diagnosis or a di↵erential diagnosis based on the extraction of clinical parameters

from routine post-processing techniques. From an information theoretic point of view, the

handling of MR information is extremely ine�cient, given that to arrive at a few clinical

parameters we require the acquisition and processing of images that contain thousands to

millions of pixels or voxels. A common example is the processing of cardiac cine images, which

consists of high dimensional spatio-temporal data very usually reduced to a small number of

clinical measurements such as ejection fraction or ventricular mass.

It would be desirable that the development of future acquisition mechanisms of medical images

accounts for this important dimensionality reduction that is performed to get from raw data

to clinically useful information. Tackling this ine�ciency seems to have much in common

with the intuition of modern sampling methods, which attempt to reduce sampling constraints

exploiting the assumption that the signal of interest lies in a subspace of smaller dimensionality

than the image itself. In CS for MRI, the signal of interest is always presumed to be the

magnetisation image, but if we modify our signal of interest to be the segmentation of the

image or its registration to a di↵erent dataset, which are also of smaller dimensionality than

the original image, we might be able to widen the spectrum of possibilities in MR acquisition

and fuse reconstruction with analysis.

1.1.3 Reuse of past data

The past two decades have seen a rapid ascent of technology in modern societies and referring to

some electronic devices as intelligent has become commonplace. This is so because the advance

of hardware and software is at a point where they can be designed to learn patterns or rules of

behaviour to direct actions autonomously, taking into consideration amounts of information in

a way that is irreplaceable by human e↵orts. These developments, often referred to as machine
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(a) Non-e�cient MR information extraction (b) E�cient MR information extraction

Figure 1.2: Conceptual di↵erences in MR information extraction. Traditional MR analysis
assumes a full image acquisition, which is later processed to obtain relevant clinical information
(a). There is a significant dimensionality reduction between the fully sampled image and the
extracted parameters that signals an ine�cient handling of information. Modern approaches
could ideally look for the low dimensional information of interest directly from incomplete raw
data, minimising the discard of acquired information (b). Compressed sensing techniques would
be a special case of this framework, where the signal of interest is the intensity image itself.

learning or artificial intelligence, have sprouted in numerous industries with noticeable benefits

in augmenting their possibilities, but much of the potential in the medical imaging sector is

still untapped.

Every day, thousands of medical images are produced and stored, capturing the state and

progress of the human body and diseases across the entire population spectrum (see figure 1.3).

This enormous load of information amasses studies and stories from the past which are valuable

for the analysis of similar information yet to come. The convergence of machine learning and

medical imaging is bound to bring great advances, and in this thesis we explore some of them.

One of the objectives is to develop learning techniques at the service of medical imaging and

analyse the benefit of training from past medical data. The outcome of the thesis will therefore

not only be new methods directly applicable to current medical imaging, but also an illustration

of how the community can progress towards the goals of intelligent imaging, where a present

imaging experiment can draw information from images acquired in the past.
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(a) (b)

Figure 1.3: Number of imaging tests carried out by the NHS in England [101] (a). MRI is the
imaging modality with the highest cumulative increase rate in the last 20 years with over a
200% increase (b).

1.2 Objectives and motivation

The objective of this thesis is to study the application of recent developments in dictionary

learning (DL), a technology for training signal models, as a solution to the challenges introduced

above. The term dictionary is used to denote a collection of elementary building blocks of

data that are assumed to be capable of reconstructing natural signals through sparse linear

combinations. One of their most attractive properties is their ability to adapt to a training

data set, absorbing salient features to provide a model that is exclusively suitable for a specific

type of data.

The use of DL techniques in MRI reconstruction and analysis has been growing in recent

years. Adaptive modelling outperforms structured models by providing more accurate sparse

representations of natural signals. This advantage can be exploited for the acceleration of

MRI acquisition in the same setup as suggested by CS techniques and can be combined with

other forms of modelling in order to perform reconstruction and analysis jointly from raw data.

Furthermore, as long as the training set is generalisable, dictionaries provides a means to reuse

imaging data by training on past medical images for an improved modelling of future scans.
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The motivation for tackling these particular challenges can be divided into scientific, economic,

and societal.

Scientific The reduction in MR acquisition time has been historically accompanied by the

emergence of new imaging modalities. Accelerating dynamic MR acquisition would push bound-

aries in cardiac and fetal imaging, where currently spatial and temporal resolution need to be

traded o↵ against each other. Also, demonstrating the ability to extract analysis informa-

tion directly from undersampled MR data would be a step forward in defining a new imaging

paradigm, in which the information clinically relevant is directly targeted without the need to

reconstruct high dimensional intensity images.

Economic The economical advantages in accelerating MR acquisition and reducing the pro-

cessing necessary from acquisition to analysis are di�cult to measure, but the current high cost

of MR scans and the lengthening of patient waiting lists indicate that there could be consid-

erable benefits. The increased demand for MR scans has been met in the past by a higher

expenditure on machines [17, 98, 36]. Bringing into the equation the possibility of scanning

patients in a fraction of the time currently necessary, would leverage much of the budgetary

stress that MR scanning puts onto the healthcare sector.

Societal Current MR scanning procedures, and particularly for dynamic modalities, are long

and uncomfortable. Producing high quality dynamic images of the heart usually requires that

the patient performs repeated breath-holds to minimise breathing motion, and this might some-

times not even be possible depending on the condition of the patient. Moreover, long waiting

lists degrade the quality of healthcare services and impact the quality of life for patients. Im-

proving the overall functioning of healthcare services would be a valuable contribution of more

intelligent MR acquisition techniques.
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1.3 Contributions

The contributions of this thesis in the application of dictionary modelling for MRI are listed in

the following subsections.

Dictionary learning for dynamic MR data reconstruction

We introduce the use of spatio-temporal dictionaries for the acceleration of cardiac cine acqui-

sition. This work is based on the foundations laid by Ravishankar et al. on the application

of DL to 2D brain structural MRI in [117]. We explore its extension to handle dynamic data

with the use of a spatio-temporal dictionary, jointly taking advantage of the high redundancy

in time while ensuring spatial homogeneity. Additionally, we modify the modelling to include a

temporal total variation (TV) penalty that can improve results in high acceleration scenarios.

The results shown are simulated experiments using raw MR data and are therefore not directly

applicable in practice, but demonstrate the capabilities of dictionary modelling for acquisition

acceleration relative to a competing method that employs a non-adaptive sparsity model.

Parallel MRI reconstruction with overcomplete and adaptive dictionaries

We demonstrate how the framework for MR acquisition acceleration using DL can be extended

to handle reconstruction from parallel data. Parallel MR is today widely used as a hardware

solution to accelerate acquisition and improve MR image quality. Innovative acquisition and

reconstruction methods such as the DL framework introduced in this thesis must be accommo-

dated to parallel coil technology to take advantage of their benefits and to be readily applicable

to today’s standard clinical procedures. We present a DL regularisation of an established par-

allel reconstruction method, which enables to control noise amplification and reduce aliasing

artefacts. Results are demonstrated with retrospective undersampling of raw parallel data and

examples of prospectively undersampled data.
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Application-driven MRI

The last contribution of the thesis targets e�cient information extraction from MR images.

The proposed concept of application-driven MRI encompasses techniques that can provide

clinically useful information directly from raw data in a way that outperforms the traditional

serial handling of information acquisition and analysis. Building on the fast DL-based recon-

struction proposed, the model is extended such that MR images are jointly represented by a

simpler labelling model, hence achieving image segmentation as a by-product of reconstruction.

This model is chosen to be a Gaussian mixture model (GMM), which can be very e↵ective at

segmenting cardiac and brain images and flexibly incorporates additional constraints such as

probabilistic priors in the form of atlases and Markov random field (MRF) regularisation.

1.4 Thesis overview

The thesis is structured in two main parts. The first part includes background information

regarding the problems tackled and the state-of-the-art that forms the foundation for this thesis.

The physical principles of MRI, the reasons for its speed limitations and previous attempts at

tackling them are laid out in chapter 2. In chapter 3 we provide background information on the

theory of CS and DL, and discuss some of the proposed methods which have successfully applied

these novel sampling and modelling techniques to MRI acquisition, with a particular focus on

cardiac cine. Chapter 4 introduces the DL method proposed for the acceleration of cardiac

cine acquisition. Results are presented in a synthetic single coil scenario with retrospectively

undersampled data, and compared against a method relying on a fixed-basis sparsity transform.

In chapter 5 this framework is extended to the parallel coil scenario, showing results on raw

data retrospectively and prospectively undersampled. The concept of application-driven MRI

is discussed in chapter 6 and is demonstrated with results of joint reconstruction-segmentation

on cardiac cine and brain MR images. To conclude, the thesis and its results are discussed and

analysed in chapter 7, with a mention on potential future work avenues.



Chapter 2

MRI principles

2.1 Introduction

MRI is a non-invasive and non-ionising medical imaging modality largely popularised by an

unmatched soft tissue contrast. Images obtained with MR are a reflection of the response of

di↵erent tissues to a controlled stimulus. This is conceptually di↵erent from other imaging tech-

niques that measure intrinsic material properties, such as computed tomography scans, which

provide a measure of attenuation coe�cients. MR images show a measure of the transverse

magnetisation inside the body at a specific time. Transverse magnetisation is produced by ap-

plying a rotating magnetic field with rotational frequency matched to the resonant properties of

certain atomic nuclei, and its behaviour across time is shaped by atomic properties that di↵er

depending on tissues.

Generally, three stages can be clearly identified in the generation of MR images [19]: First,

the magnetic pulses used to create a transverse magnetisation must be designed. Then, during

the acquisition stage the signal emitted is sampled by a receiver coil in the scanner. The

last stage is the reconstruction, where the signal captured is modelled and used to produce an

image. The acquisition speed of MRI is limited by physical properties of the atoms manipulated

10
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and hardware limitations, therefore restricting the use of this imaging tool due to the long

scan times. This work focusses on the two latter stages, proposing alternative designs for the

acquisition and reconstruction which allow faster and informative imaging.

In this chapter we introduce the nuclear magnetic resonance phenomenon that is at the core

of MRI, and explain how it can be exploited to create images of the body. The problematic

acquisition speed limits are also analysed and previous attempts at tackling them, which can be

found in the literature, are summarised. The presentation of MRI given in this chapter follows

the classical description found in [78].

2.2 Nuclear magnetic resonance

The essential physical phenomenon enabling MRI is nuclear magnetic resonance (NMR) [75],

which refers to the exchange of energy between atoms and a magnetic field rotating at a resonant

frequency. To introduce this concept we look at a sequence of three atomic phases composing

the NMR experiment, which are spin polarisation, excitation and relaxation, and conclude with

the Bloch equation, formally summarising these physical events.

2.2.1 Spin polarisation

The nuclei of atoms in our body with an odd number of protons or neutrons possess an angular

momentum called spin with an associated microscopic magnetic field. One example of this

kind of atom largely present in the body is hydrogen (1H). The backbone of an MR machine

is a powerful superconducting magnet, capable of applying a high magnetic field which, by

convention, is drawn along the z axis. Under the influence of this field, called B0 field, the

magnetic moments of individual nuclei abandon a random orientation and adopt one out of a

set of discrete values. For a spin 1
2
such as for 1H atoms, the orientation can be parallel or

anti-parallel to the field, depending on whether they adopt a low or high energy state [75]. This
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change of behaviour is represented in figures 2.1a and 2.1b.

The interaction of an ensemble of nuclei under a magnetic field results in a net e↵ect of many in-

dividual spins acting to create a macroscopically detectable magnetisation vector. The magnetic

vector is decomposed into a longitudinal component in the z axis, and a transverse component

lying on the x-y plane. The analysis of an ensemble of nuclei reveals that at room tempera-

ture a small majority of atoms aligns with the field, creating a net longitudinal magnetisation

M = M0
z aligned with B0. Individual transverse magnetisation of atoms however have random

phases, and therefore do not create a net transverse magnetisation (Mxy = 0).

Nuclei have a resonant frequency proportional to the surrounding magnetic field. The B0 field

causes similar nuclei to precess at the same frequency, called the Larmor frequency,

⌫ =
�

2⇡
B0, (2.1)

where � is the gyromagnetic ratio and is nucleus dependent. The 1H atomic nuclei has � =

2.68⇥ 108 rad/s/T, and so in a typical MR system of 1.5 T precesses at roughly 64 MHz [61].

This system state of a net longitudinal magnetisation with aligned spins is called equilibrium

state, and sets the scene for the NMR experiment.

2.2.2 Excitation

The Larmor frequency is the resonance frequency at which energy from an external magnetic

induction field can be absorbed by the nuclear spin system. In the MR literature, this field is

produced by a radio-frequency (RF) pulse B1 perpendicular to the static B0. If enough energy

is deposited in the system, the spins will come into phase and some low energy spins will jump

to a high energy state, macroscopically tilting the net magnetisation onto the x-y plane [78].

As a result, longitudinal magnetisation decreases and the net magnetisation now includes a net

transverse component spinning at the Larmor frequency as depicted in figure 2.1c.
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(a) Thermal equilibrium (b) Spin polarisation

(c) Excitation (d) Relaxation

Figure 2.1: Di↵erent atomic nuclei phases in the NMR experiment. Low-energy state nuclei
are represented in light blue and high-energy state nuclei are dark blue. After spin polarisation
with the B0 field, the system of spins can be excited resulting in the transverse magnetisation
Mxy. The bulk magnetisation relaxes at the end of the excitation, returning a state where it
again aligns with the B0 field.

2.2.3 Relaxation

After excitation, net magnetisation returns to the equilibrium state through a process called

relaxation. In this time interval, RF energy absorbed during excitation by some spins to

adopt a high energy state is liberated as they return to a low energy state, causing a gradual

decay of transverse magnetisation and the recovery of the original longitudinal magnetisation

as illustrated in figure 2.1d. The liberated energy constitutes the emitted signal, which can be

sampled and used for imaging [75].

Two e↵ects govern the transition from the excited state to equilibrium over a period of time

⌧ [78]. First, longitudinal relaxation is caused by energy exchange between the spins and the

surrounding lattice, falling back to thermal equilibrium. It is described by an exponential curve
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characterised by the spin-lattice relaxation time T1:

Mz(t+ ⌧) = M0
z �

�
M0

z �Mz(t)
�
e
� ⌧

T1 . (2.2)

The term T1 is a tissue specific constant which is usually longer at higher field strengths.

Similarly, transverse relaxation results from spins dephasing in the absence of the RF signal:

Mxy(t+ ⌧) = Mxy(t)e
� ⌧

T2 . (2.3)

This decay is also governed by an exponential curve with the spin-spin relaxation time T2

which is also tissue dependent. It is crucial that T1 and T2 are tissue specific, given that this

makes di↵erent tissues react di↵erently to the same stimulus, becoming a mechanism not only

to resolve them but to create images with di↵erent contrast patterns.

2.2.4 Bloch equation

The temporal behaviour of the net magnetisation of a nuclear spin system was formalised in

1946 by Felix Bloch [15] in what is known as the Bloch equation:

dM(t)

dt
= (M(t)⇥ �B1(t))�

Mz(t)�M0
z

T1

� Mxy(t)

T2

. (2.4)

It synthesises the excitation reaction of a net magnetisation M initially in equilibrium to an

external electromagnetic radiationB1(t) and the subsequent relaxation phase governed by tissue

specific constants T1 and T2.
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2.3 Magnetic resonance imaging

MRI refers to the technique exploiting the NMR signal produced by the transverse mag-

netisation of atomic nuclei to generate images. The emitted signal is a rotating entity de-

pendent on space and time, and can therefore be described by the complex-valued variable

m(r, t) = m(r)ei�(r,t), where r refers to (x, y, z) space and m(r) is the signal of interest [78].

Crucial components for MRI are encoding gradients, which enable the spatial characterisa-

tion of the signal received, and the notion of k-space, relating the sampled signal with the

magnetisation image.

2.3.1 Encoding gradients

The RF pulse causes all nuclei in the body precessing at the resonant frequency to emit a

signal, regardless of their spatial location within the body. A MRI scanner is equipped with

encoding gradient coils, which are capable of generating constant gradients that are superposed

to the B0 field creating spatially linear varying precessing frequencies [145]. Following from

equation (2.1), a gradient G(t) will cause a frequency deviation from the Larmor frequency

equivalent to

�f(r, t) =
�

2⇡
G(t) · r. (2.5)

Encoding gradients therefore modify the frequency of rotating nuclei to be directly propor-

tional to their location within the body as is illustrated in figure 2.2. There are generally two

mechanisms for spatial localisation using encoding gradients: selective excitation and spatial

encoding [78].

Selective excitation

Applying a gradient in a single direction, for instance in the z direction, will induce the spatially

dependent precession f(z) = �
2⇡
(|B0|+Gzz), creating a linear variation of spin frequencies along
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(a) Encoding for slice selection in z (b) Full spatial encoding

Figure 2.2: Encoding gradients for spatial localisation. A slice selection gradient can create
slabs of signal with di↵erent shifts from the Larmor frequency (a). This principle is applied
three dimensions to fully encode the signal in space.

the body. This set-up provides the ability to excite single x-y slabs of nuclei sharing a similar

frequency f(z). The thickness of the slab is controlled by matching the properties of the RF

pulse frequency content and a gradient of a specified amplitude to control the spatial extent for

which the nuclei have Larmor frequencies that are matched by the pulse. This forms the first

step for 2D imaging and is illustrated in figure 2.2a.

Spatial encoding

Immediately after an RF pulse, the excited spin system in the x-y plane is phase coherent and

rotates at the Larmor frequency [78]. It is possible to determine the di↵erence in spin phase

caused by an additional gradient, for instance in the y direction, by integrating the frequency

deviation over time, such that

��(y, ⌧) = 2⇡

Z ⌧

0

�f(y, t)dt = 2⇡

Z ⌧

0

�

2⇡
Gy(t)ydt = 2⇡ky(⌧)y. (2.6)

Here we have used ky(⌧) =
R ⌧

0
�
2⇡
Gy(t)dt. A simple encoding protocol will use a short gradient

pulse duration ⌧ to create groups of atoms in the y direction sharing the same phase. This is

the phase encoding step and is represented in figure 2.3b [78].
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Moreover, it is clear how equation (2.5) can be used again in the remaining dimension x to

create frequencies that are spatially varying in x. The use of this gradient to resolve the last

encoding dimension is referred to as the frequency encoding step, and contributes in turn with

the phase term

��(x, t) = 2⇡kx(t)x, (2.7)

where kx(t) =
R t

0
�
2⇡
Gx(⌧)d⌧ [78]. This stage is illustrated in figure 2.3c. At this point, each

spatial location in the x-y plane is uniquely described by its phase.

The phase component of the spatially encoded signal m(r, t) can be included in the description

of the emitted signal, which, ignoring the carrier Larmor frequency, becomes

m(r, t) = m(r)ei��(r,t) = m(r)ei2⇡k(t)·r. (2.8)

Here we have used ��(r, t) = 2⇡k(t)·r to generalise encoding in the y and x dimensions of

equations (2.6) and (2.7).

(a) No encoding (b) Phase encoding (c) Frequency encoding

Figure 2.3: Spatial encoding in a 2D slice through phase and frequency encoding. Without
gradient encoding, the signal received is a contribution of identically defined nuclei (a). The
joint application of a phase (b) and a frequency (c) encoding allows to uniquely describe each
location with di↵erent phases.
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2.3.2 NMR signal measurement

The precession of m(r, t) creates an oscillating magnetic flux that induces a voltage in a receiver

coil perpendicular to the B0 field and tuned to the Larmor frequency. Samples of this voltage

constitute the signal used for imaging. The transverse magnetisation can reveal di↵erent tis-

sue properties depending on how the excitation pulse and the measurement are coordinated.

Defining long time intervals between RF pulses and reading measurements immediately before

relaxation will reveal the proton density of the tissue (PD weighting), whereas allowing for

an interval of time between the end of the pulse and the sampling can reveal T2 relaxation

properties of the tissue (T2 weighting) [19]. Examples of this flexibility in image contrast are

shown in figure 2.4 on a simulated brain scan from [95].

(a) T1 weighting (b) T2 weighting (c) PD weighting

Figure 2.4: Simulated brain image [95] showing di↵erent contrast patterns. This is an example
of the great contrast flexibility enabled by the physical principles underlying MRI.

The signal received is the aggregate response from nuclei at all spatial locations which have

been subject to excitation. Usually, multiple receiver coils are used in a parallel arrangement,

where the signal received is also dependent on the geometry and location of the coil [112, 59].

The magnetisation at coil c is therefore also multiplied by a sensitivity function Sc, yielding

m̂c(t) =

Z +1

�1
Sc(r)m(r, t)dr. (2.9)

We will assume for now the use of a single body coil to simplify the description before explaining
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the use of parallel imaging in section 2.4.1. The received signal therefore simplifies to [78]

m̂(t) =

Z +1

�1
m(r, t)dr =

Z +1

�1
m(r)e�i2⇡k(t)·rdr. (2.10)

Note that this expression does not take into account factors such as the decay of transverse

magnetisation and non-idealities like B0 inhomogeneity or changes of the object in time. Nev-

ertheless, it provides a suitable model for the received signal and will be used throughout this

work.

2.3.3 K-space

The direct mapping created between precessing frequencies and space through encoding gradi-

ents is identical to a Fourier relationship. Samples can therefore be interpreted as acquired in

the spatial-frequency domain, also called k-space, where each sample is a sum of magnetisation

from atoms in the entire volume weighted by the Fourier kernel e�i2⇡k(t)·r [78].

The coordinates of the sample in k-space are given by k(t) and are directly controlled through

the gradientsG(t) [19]. An example is given in figure 2.5. Applying a positive Gy(t) gradient for

a short period of time ⌧ will produce a positive value ky(⌧), which is interpreted as a departure

from the k(t) = 0 coordinate along the y axis. The use of both gradients Gy(t) and Gx(t)

allows traversing the x-y plane of k-space. Given that gradient pulse durations directly relate

to k-space locations, the received signal can be rewritten as

m̂(k) =

Z +1

�1
m(r)e�i2⇡k·rdr, (2.11)

or if we consider the practical case of 2D discrete time samples we write

m̂(kx, ky) =
Nx/2X

x=�Nx/2

Ny/2X

y=�Ny/2

m(x, y)e�i2⇡(kxx+kyy). (2.12)
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(a) No gradients applied (b) Application of Gy(⌧) (c) Application of Gy(⌧)+Gx(⌧)

Figure 2.5: Traversing k-space with the application of gradient fields.

For the sake of simplicity we will adopt the following matrix notation using F to denote a 2D

discrete Fourier transform (DFT):

m̂ = Fm. (2.13)

An appropriate coordination of gradients will lead to a scan protocol traversing locations of

k-space and acquiring di↵erent samples. This protocol, usually called a trajectory, has an

important impact on the appearance of the reconstructed image [19]. The design of a protocol

is concisely represented in sequence diagrams such as the one shown in figure 2.6. The simplest

example is the Cartesian trajectory, which traverses a rectangular k-space acquiring equidistant

samples as shown in figure 2.7a. Cartesian sampling poses a very simple reconstruction stage,

which is given by a DFT, but has the downside of requiring many excitation pulses to traverse

a full k-space. Other possibilities exist, such as radial or spiral trajectories (see figures 2.7b

and 2.7c), which require a gridding stage prior to DFT reconstruction.

2.3.4 FOV and resolution

From the classical description of the DFT relating time and frequency domains we know there is

an inherent compromise between sampling frequency in time domain and spectrum replicas in

frequency domain. Assuming Cartesian sampling in the MRI setup, this imposes the following
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Figure 2.6: Pulse sequence diagram repre-
senting the coordination of gradient pulses.
Slice selection in the z direction is applied
with the RF excitation. Gradients to encode
2D spatial information are then applied se-
quentially, with phase encoding in the y di-
mension and frequency encoding and read-
out in the x dimension.

(a) Cartesian (b) Radial (c) Spiral

Figure 2.7: K-space trajectories

relationship between k-space sampling and image FOV [78]:

FOVx =
1

�kx
, FOVy =

1

�ky
. (2.14)

Choosing a sampling frequency smaller than the Nyquist rate fNyq = 2W , where W is the

spatial support of the object imaged, will result in aliasing artefacts.

Similarly, finite sampling in Fourier domain implies a compromise between the sampled k-space

support and resolution in image domain. This relationship is given as [78]

�x =
1

�kxNx

, �y =
1

�kyNy

, (2.15)

meaning the larger the k-space support sampled, the finer the resolution in image domain.
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(a) K-space domain (b) Image domain

Figure 2.8: FOV and resolution relationships between k-space (a) and image domain (b).

2.4 Acquisition acceleration

The fact that k-space samples must be collected sequentially in MRI makes it a very time-

consuming process. The acceleration of MRI acquisition is desirable for a number of reasons.

The most direct consequence of faster scans is an increased comfort for patients. Ideally the

patient needs to remain static for the duration of the scan, but patients who are severely ill or

too young may not tolerate long scanning procedures. Indirectly, this translates for hospitals

and clinics into a higher throughput and shorter waiting lists, therefore reducing the cost of MR

scanning. Faster scans can also have an e↵ect on the quality of images, especially for dynamic

MR, as they can reduce the corruption introduced by motion artefacts.

In the most simple scan protocols the speed limit is dictated by the number of RF pulse

excitations required and the time interval needed between pulses, known as repetition time

TR. A simple 3D gradient echo Cartesian acquisition takes as long as

TAcq = TR⇥NzNy, (2.16)

where Nz and Ny are the number of phase encodes and it is implied that readout is being

performed along kx. A full set of frequency encodes is acquired within the same RF pulse

excitation so Nx can be ignored in calculating TAcq. The arbitrary reduction of TR is not
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viable given that it is set by image contrast requirements, readout properties, signal-to-noise

ratio and specific absorption rate limits.

Many solutions have been proposed for MRI acquisition acceleration. One possibility is to look

for pulse sequence designs that can traverse k-space with fewer RF excitations, such as spiral

trajectories shown in figure 2.7c [3] or other existing examples [110, 102, 79]. Other trajectories

such as radial sampling (see figure 2.7b) naturally favour denser sampling for low frequencies

and sparser at higher frequencies, and have also been proposed for acceleration [114]. Moreover,

carefully designing a pulse sequence can allow to collect multiple separately encoded readouts

per RF pulse as is proposed by fast spin echo strategies. The extreme example is given by

echo-planar imaging [93], which traverses a full k-space as a continuous trajectory. The quality

of multi-echo sequences is nevertheless a↵ected by relaxation e↵ects and a variation of contrast

given that phase encodes are acquired at di↵erent times after the excitation.

A di↵erent perspective on acquisition acceleration is taken by methods that assume a particular

trajectory but undersample k-space by skipping the acquisition of some samples [86]. Given

a binary mask M 2 RN⇥N , N = NxNy, with entries [M]n,n = 1 if k-space sample n has been

acquired, an undersampled acquisition is written as m̂ = MFm. The undersampling of a

k-space intended to be sampled at the Nyquist rate provokes aliasing in image domain, which

can take di↵erent forms as shown in figure 2.9. Sampling only low frequencies results in worse

image resolution, regular undersampling creates coherent aliasing and random sampling leads

to random aliasing. Physically this is interpreted as the energy of the image being folded onto

itself in di↵erent locations.

Throughout this thesis we will refer to an aliasing-free acquisition satisfying the Nyquist crite-

rion as a fully sampled acquisition. The problem posed for reconstruction is then an underde-

termined system of linear equations, which is ill-posed unless sampling redundancy is exploited.

Sampling redundancy refers to the fact that some samples may be dispensable without mean-

ingful loss of information. These techniques will be of most interest in this work.

Early approaches proposed to create sampling redundancy through additional hardware. In
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(a) Full (b) Low-frequency (c) Regular (d) Random

Figure 2.9: Undersampling strategies in k-space (top) and the aliasing they produce in image
domain (bottom).

particular, the use of multiple receiver coils in a parallel imaging set-up linearly increases

the number of samples for a particular image, which theoretically allows maintaining a fixed

amount of information even after k-space undersampling [129, 112, 59, 136]. The last decade

has seen the rise of methods that exploit inherent image redundancy, whereby some samples

are presumed dispensable because they can be derived by assuming known properties of the

image, such as compressibility [86, 55].

2.4.1 Explicit redundancy: Parallel imaging

Using multiple coils for the acquisition of MRI data is an e↵ective method of reducing scan

time. Each coil samples the signal emitted by the same object at the same time but filtered

through di↵erent sensitivity patterns as depicted in figure 2.10. This was formally introduced

in equation (2.9), which can be rewritten in discrete time and matrix form as

m̂c = FScm. (2.17)
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Assuming a total of Nc coils, this expression can be extended to account for all the data acquired

by writing

˜̂m = F̃S̃m, (2.18)

where we have used a tilde .̃ to refer to variables concatenating parallel data or operators. The

term ˜̂m 2 CNNc is the vertical concatenation of k-space data from all coils, F̃ is a block diagonal

concatenation of 2D Fourier transforms F, and S̃ denotes a vertical concatenation of sensitivity

matrices.

Figure 2.10: Parallel MRI acquisition using 4 coils. The data acquired by each coil is filtered
through its own sensitivity pattern.

The expression in equation (2.18) is an overdetermined system of linear equations, meaning

that in theory it is possible to design S̃ such that we can derive m from as few as N
Nc

samples

of ˜̂m. For M samples acquired, we define an acceleration rate R = N
M
. Using M̃ to denote the

block diagonal concatenation of the undersampling mask M, the accelerated scan is modelled

as

˜̂m = M̃F̃S̃m. (2.19)

Di↵erent methods have been emerged for the reconstruction of m given ˜̂m, which propose to
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look for a solution in either the image or the k-space domain [129, 112, 59, 136]. As long as

R  Nc, perfect reconstruction could in theory be achieved for orthogonal sensitivity patterns.

However, the geometrical distribution of coils around a body prevents perfect decorrelation

and in practice the acceleration rate is limited by numerical instabilities occurring when R

approaches the theoretical maximum Nc. In chapter 5 we provide more details on parallel

imaging limitations and solutions.

2.4.2 Implicit redundancy: Image correlation

An alternative route for acquisition acceleration in MRI is the use of inherent data redundancy.

The more information about the object is known or assumed a priori, the fewer samples will be

needed for its reconstruction. The diversity of methods which have been proposed incorporating

prior knowledge into a model for the sampling process is very large, and their success depends

on the validity and flexibility of the assumptions made, as well as on the accuracy with which

these assumptions can be introduced into the reconstruction process.

A simple assumption about the magnetisation image, given that it is a reflection of spin density,

is that it is expected to be a real-valued image, and therefore its Fourier representation should

be conjugate symmetrical with respect to the k-space origin. The number of phase encodes can

therefore potentially be reduced by almost half without loss of information. This is what partial

Fourier sampling proposes [94, 35, 103]. MR images are nonetheless always complex-valued due

to phase distortion e↵ects from o↵-resonance, eddy currents and motion, amongst other causes

[19]. It is possible to estimate and reproduce slowly varying phase patterns by fully acquiring

additional phase encodes in central k-space, but even so the acceleration rates are generally

limited to about R = 1.8 [96].

Spatio-temporal correlations in dynamic MR images have also been the subject of much interest

in trying to reduce the number of samples required. The changes between successive frames in a

dynamic acquisition are usually confined to a small region of the image and are frequently slowly
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varying. As we saw in section 2.3.4, FOV and sampling density are inversely proportional. The

reduced FOV method [63] draws on this relationship to fully acquire a reference image that is

later updated with a sparser sampling grid in order to capture changes occurring only in the

(assumed) smaller spatial region. Such a strong assumption on the data degrades image quality

when changes are not only present in the a priori defined reduced FOV, and therefore limits

acceleration to R = 2.

More strategies have been proposed for the sequential update of a dynamic k-space. The keyhole

method [142, 68] fully acquires a reference image and suggests the update of only the centre

of k-space, which is where most of the signal’s energy resides. A more elaborated variation is

proposed by RIGR [77], where high frequency information is not directly obtained from the

fully sampled reference scan, but instead it is fitted to a set of basis functions derived from this

reference.

To try to cover the acquisition of full k-space while reducing scan time methods such as sliding

window [37, 151] have emerged, where individual samples are shared by subsequent frames. A

R = 2 acceleration can be achieved by acquiring even and odd phase encodes separately for pairs

of frames and then extrapolating missing samples from neighbouring frames. Reconstructions

using these methods at higher acceleration rates are however prone to blurring e↵ects.

Other approaches have attempted to target the suppression of aliasing, which is the direct

consequence in image domain of k-space undersampling. The x-f space, which can be observed

by taking a Fourier transform of the data along time, is generally a sparse representation of the

data, accounting for the large temporal redundancy in dynamic MRI. Undersampling k-space

with a regular lattice will create replicas of the spectrum at regular intervals. If the x-f space

is su�ciently sparse, it may be possible to simply filter out unwanted aliasing. This method

is known as UNFOLD [88]. A similar approach is taken by k-t BLAST and k-t SENSE [136],

which includes an additional training stage where the support of the x-f spectrum is estimated

and used for more accurate filtering.

A family of algorithms which has brought a lot of attention in the last decade has been meth-
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ods based on CS. The fundamental observation used for CS reconstructions is that images or

sequences of images can be sparsely represented in the image or a transform domain. This

statement means that missing k-space data can be recovered with the a priori assumption that

the reconstructed image is compressible. Its mechanism along with its application to MRI

sampling is explained in more detail in the next chapter.

2.5 Conclusion

In this chapter we have reviewed the basic principles behind MRI acquisition and reconstruction.

The MR experiment provides a means to interact with nuclei of the body using a superconduct-

ing magnet, and to generate a magnetisation signal dependent on nuclear magnetic properties

that can be measured. It is then possible to produce images from this signal with the use of

encoding gradients, which can resolve the magnetisation image through space by sequentially

acquiring a number of phase and frequency encodes of a selected slice. The data resulting from

this data is interpreted as the Fourier transform of the image of interest and can therefore be

trivially inverted. This sequential collection of data is however inherently slow, and various

techniques have been devised to reconstruct images from fewer samples exploiting sampling

redundancy, which is created through parallel imaging or can be implicitly found in the image.

In the following chapter we will introduce the mathematical foundations of CS, which allows

the exploitation of inherent image redundancy, with a particular interest in novel adaptive

methods, and discuss its application to MRI acquisition and reconstruction.
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Adaptive compressed sensing

3.1 Introduction

The quality of digital sensors is ever improving and is allowing us to capture larger amounts

information each year. In 2007, the amount of digital information produced surpassed the stor-

age capabilities in the world, producing a paradigm shift in which data is ephemeral, something

to be immediately used or lost (see figure 3.1). In 2012 the estimated digital data in the cloud

was 462 exabytes (40⇥ 1018 bytes) and in 2020 the world’s digital data is expected to grow to

40 zettabytes (40⇥ 1021 bytes) [125]. MRI and medical imaging in general contributes to this

overwhelming increase of digital information.

Figure 3.1: Estimation of the
amount of data produced and
stored [132]. In 2007, the
amount of information created
surpassed the storage capabili-
ties.

The digitisation of natural information is produced through sampling. Analog-to-digital sam-

29
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pling has been classically governed by the theorem proposed by Shannon in 1949 [123], which

states that a continuous time signal of bandwidth B can be perfectly recovered after regular

sampling provided the sampling rate is at least 2B. This theorem, although not formally de-

scribed, was implied by earlier results from Nyquist [104] that pointed to this critical sampling

frequency, hence naming it the Nyquist rate. Reconstruction from samples obeying the Nyquist

rate is attractive as it is linearly performed with sinc function interpolation, and although it is

a su�cient condition for perfect reconstruction, it is not necessary.

Any signal reconstruction problem is an ill-posed problem, and its unique solution requires

tailoring a given number of samples to a predefined signal model. The signal model is interpreted

as prior knowledge about the signal and has a direct impact on the number of samples necessary

for reconstruction, given that the more we know about the signal a priori, the less we need to

discover about it from sampling. In Shannon’s theorem the prior knowledge is a bandwidth

limit, but in many situations it is possible to incorporate additional knowledge about the signal

that reduce the sampling requirements imposed by Nyquist.

The term compressed sensing (CS) has been used to define a non-linear sampling theorem con-

centrating on the sampling of signals which are sparse or compressible [42, 28]. This condition

encompasses many natural signals such as speech or images as has been demonstrated by data

compression. Although CS is not the first to have proposed sub-Nyquist sampling strategies,

it is one that is naturally suited for MRI given that the requirements for signal recovery can

be satisfied without changing the physical scanner principles [84].

3.2 The need for modern sampling

There are many reasons why exploring newer forms of sampling is sensible. We summarise three

of them in this section responding to the necessity for e�ciency, cohesion and pragmatism in

modern sampling.
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E�ciency Most of the data acquired through digital sensors, such as speech or images,

undergoes a compression stage after acquisition. This is a step needed to make the most out

of the storage capabilities we have at hand and does not alter perceptually the quality of the

data. From an e�ciency perspective, it is not the best use of our resources, given that most

of the information acquired is disposed and never used. It would therefore be interesting if we

could estimate how compressible a signal is before acquisition and adapt the sampling stage

such that information is captured in an already compressed format [28].

Cohesion The Shannon sampling theorem proposes a linear process both for sampling and

reconstruction whereas compression is a highly non-linear process. Even though as separate

stages sampling, compression and reconstruction can be thought of as optimal data processing

modules, there is no reason to think that they are jointly optimal in providing compressed

samples [7].

Pragmatism In certain cases the need for alternative forms of sampling is justified by the

technical problems encountered in classical sampling. High-bandwidth signals impose demand-

ing challenges on the acquisition, storage and processing hardware when sampled at the Nyquist

rate [7, 133], and is a good example where traditional sampling is problematic. In the particular

case of MRI, sampling time is proportional to the number of samples acquired, and therefore

breaking the Nyquist rate by acquiring less samples enables faster scanning [84].

3.3 Compressed sensing

The Nyquist sampling of a 1D continuous time or space signal f(t) over a support of length

NT is expressed as

xi = f(nT ), n = 1, ..., N (3.1)
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where 1/T is the Nyquist rate. To analyse CS we replace samples with a set of linear measure-

ments

y = �x, (3.2)

where � 2 CM⇥N is a sensing operator containing sensing functions as rows. These functions

are sometimes not up for design but are given by the physics of the acquisition mechanism [28],

just as Fourier functions are sensing functions specific to MR sampling. Sub-Nyquist sampling

is possible if � can produce a set of measurements y 2 CM with M ⌧ N from which we can

perfectly or approximately recover x.

An immediate problem of sub-Nyquist sampling is that equation (3.2) produces an underde-

termined system of linear equations, meaning that for a given y there is an infinite number of

solutions x. CS shows that this problem is nevertheless solvable and tractable provided some

characteristics of � and x are fulfilled. Specifically, there are three key topics to be discussed

for a full description of CS:

• Signal sparsity: CS targets the recovery of signals that can be sparsely represented.

• Sampling incoherence: The measurement matrix � must be a restricted isometry.

• Non-linear reconstruction: The CS problem imposes the use of a non-linear recon-

struction.

3.3.1 Signal sparsity

CS requires that the signal of interest be sparse in its natural form or after transformation

[42, 28]. This sparsity-based model is the prior knowledge which assumes redundancy in the

signal and constrains the solution set. By definition, all signal models are wrong in the sense

that they can not be able to fully explain a given signal [18]. Instead their goal is to encompass

under the same umbrella signals sharing specific characteristics, and their usefulness can be

evaluated based on their flexibility or specificity in accomplishing a particular task.
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Sparsity-based models have gained prominence in the last decade as shown in the timeline

of figure 3.2 [48], mainly due to their potential in compactly representing a wide range of

natural signals. This has led to their successful application in general processing tasks such

as denoising [91], super-resolution [153], classification [154] and segmentation [90]. Recently,

one of the most successful models for a variety of applications has been the sparse synthesis

model and, although CS methods are not restricted to this modelling, we will be using it for

its theoretical description. The sparse synthesis model is characterised by two properties:

• Synthesis: Signals are assumed to be a linear combination of basis functions.

• Sparsity: The coding vector defining the synthesis of a signal from basis functions is

sparse, i.e. uses a restricted number of non-zero coe�cients.

.
.
.

Internal 
model!

External 
world!

X ��X ��

Figure 3.2: Timeline of signal modelling trends as summarised in [48] (left), and physical
interpretation of the sparse synthesis model [105] (right). Natural signals are assumed to be a
sparse linear combination of transform functions grouped in a basis or frame  .

Given a signal x 2 CN , we can express it as a coding vector � 2 CK in a basis or frame

 2 CN⇥K , with normalised columns  1,  2, ...,  K , such that

kx� �kp = ✏, (3.3)

ensures a small or null ✏ for approximate or perfect representation respectively. The sparsity
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property further imposes that the coding � is sparse, or equivalently that s = k�k0 ⌘ #(n|�n 6=

0) ⌧ K. In approximation methods, norms typically used to measure model deviation are lp

norms with p = 1, 2, and 1. Throughout this work we will concentrate on p = 2 when

measuring modelling errors.

Assuming a perfect approximation of the signal by its sparse representation, the system of

linear equations modelling the sampling mechanism becomes

y = �x = � � = A�, (3.4)

where we have used the composite matrix A 2 CM⇥K to describe the combined e↵ect of the

sensing matrix � and the sparse synthesis matrix  . Recovering x from samples y is therefore

equivalent to finding its representation �, from which we have the strong prior knowledge that

it is a sparse vector.

Contrary to the forward transformation (finding y from �), the inverse transformation is highly

non-linear, and consists on finding the s ⌧ K coe�cients in � that will best approximate y,

or the sparsest code that will keep modelling error below a certain threshold:

min
�
ky �A�k22 s.t. k�k0  s, (P0)

min
�
k�k0 s.t. ky �A�k22  ✏. (P0-✏)

We will refer to these as the sparsity constrained and the error constrained l0 norm problems,

and respectively refer to them as problems (P0) and (P0-✏). Both problems are equivalent

in that it is possible to select an error ✏ that will provide the same solution as a maximum

sparsity s. In practical situations, ✏ is always non-zero because the sparse approximation is

never perfect and any measurement mechanism inevitably introduces unwanted noise. The CS

problem looks at the special case when M < K for this non-linear and NP-hard problem.

The analysis of CS has focussed on the case when  is an orthonormal basis, which is the case
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for many wavelet transforms [91]. Contrary to the measurement matrix, the sparsity matrix

can be fully designed and in some situations it is useful to exploit overcomplete more flexible

transforms to find representations of a signal that are sparser than any orthonormal transform

can provide [118]. In such cases it is common to refer to the transform as a dictionary D,

with more columns K than rows N , and where the columns of the transform can be highly

correlated. This special case will be recurrent throughout this work and its implications will

be explained in more detail in section 3.4.

3.3.2 Sampling incoherence

One of the most important questions is to determine under which circumstances equations (P0)

and (P0-✏) have a unique solution. It is simple to see that some designs of matrix A will make

finding a unique minimiser hopeless. For instance, if we are given the prior knowledge that

signal � has sparsity 1 but all the columns of A are identical, it will be impossible to locate the

support of the non-zero coe�cient in � from samples y [56]. To avoid this scenario, we require

that di↵erent � vectors give di↵erent sampling vectors y after transformation A.

This intuitive thought was formalised by Donoho and Elad [43, 44] with the notion of coherence

of matrix A, which measures the similarity between columns of A and is given by

µ(A) = max
i 6=j

|aH
i aj|. (3.5)

This is a concept that is recurrent in the analysis of the sparse recovery problem. A low

coherence prevents two di↵erent sparse vectors � from collapsing onto the same measurement

vector y as in the trivial example above. It can be shown for instance that if a solution �⇤ is

found for which

k�⇤k0 <
1 + 1

µ(A)

2
, (3.6)

it is necessarily the sparsest solution of equation (P0-✏) for ✏ = 0 [43].
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In the particular case of CS, where the transform A is a composite of a measurement matrix

and a sparsity matrix, a similar concept is the mutual coherence [45] between the bases, given

by

µ(�, ) = max
iM,jK

|�H
i  j|. (3.7)

Bounds similar to equation (3.6) dependent on mutual coherence can be found that ensure

solution uniqueness. A low mutual coherence degree prevents a sparse combination of rows in

� to represent the columns of  and vice-versa, meaning that a sparse vector � will produce

a dense signal y. An example of bases producing minimal mutual coherence is the Fourier and

the canonical (standard) basis.

A similar analysis was pioneered by Donoho and Elad [43] with the definition of the Spark of

matrixA, which is the minimum number of linearly dependent columns inA. This deterministic

analysis of the theory of sparse recovery however includes worst case scenarios and leads to very

pessimistic uniqueness bounds. This motivated the probabilistic analysis led by Candès and

Tao [27] with the idea of restricted isometry property (RIP). Matrix A is said to satisfy the

RIP with restricted isometry constant �s if

(1� �s)k�k22  kA�k22  (1 + �s)k�k22. (3.8)

The RIP e↵ectively measures how much A deviates from orthonormality, and is closely related

to its Spark as defined by Donoho and Elad, as it geometrically ensures that two sparse vectors

in the N -dimensional space maintain approximately their Euclidean distance in the reduced

M -dimensional space.

Provided �s is maintained small, it will be possible to recover � from y. It is an NP hard

problem to determine whether a matrix is a restricted isometry, but it can be proven that

some classes of matrices will exhibit a low restricted isometry constant with high probability

[25]. This is the case for instance of matrices with random Gaussian or Bernoulli entries, and

also applies to random subsets of the DFT [120]. In MRI we are restricted by the physical



3.3. Compressed sensing 37

acquisition mechanism to sample in the Fourier domain, meaning that a random subsampling

of k-space is extremely likely to lead to a RIP system, hence enabling the natural application

of CS to MRI without any hardware modifications.

The conditions discussed were derived for sparsity transforms which are orthonormal or tight

frames, and are necessary if the requirement is to find the sparse code �. Looking for a sparse

representation of signal x in an overcomplete dictionary D would be a terrible choice according

to this analysis because their columns are highly correlated, meaning that a single sparse vector

� would have many di↵erent representations in y = �x = �D�. However, if the focus is on

recovering the signal x instead of the original �, dictionary incoherence is not a requirement

as long as it is possible to recover one out of the many sparse representations that the signal x

has in dictionary D.

Sparse recovery in overcomplete, highly correlated dictionaries has received less attention and

recovery guarantees are very recent. Some results were presented in [56], where notions of D-

Spark and D-RIP are introduced for theoretical analysis of recovery bounds. These are closely

linked to the traditional Spark and RIP measures but focus the analysis on signal x and the

measurement matrix �, so for instance, matrix � satisfies the D-RIP condition with constant

�Ds if it is the smallest value for which

(1� �Ds )kxk22  k�xk22  (1 + �Ds )kxk22, (3.9)

where x is any vector which can be represented in D by an s-sparse code �. Notice that here

there is no requirement on the sparse representation, which can take many forms and does not

need to be unique. Sparse coding with overcomplete and redundant dictionaries will be studied

in more detail in section 3.5.
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3.3.3 Non-linear reconstruction

Ensuring a unique minimiser for equations (P0) and (P0-✏) does not necessarily mean that the

solution can be found. The use of the l0 norm as a measure of sparsity makes the problem

non-convex and only a combinatorial search could guarantee finding the global minimiser.

There have nevertheless been multiple attempts at solving this problem through heuristics

with e�cient algorithms. In this section we review a few successful solutions, some of which

will be used later on in this work.

l0 norm minimisation

Some greedy methods have been successful at approximating the combinatorial problem of l0

norm minimisation. A greedy algorithm is any method that proposes to iteratively seek the

locally optimal choice in the hope of approximating the global minimum. This is a reasonable

compromise for the sparse approximation problem given that the global solution to the NP

hard problem is practically unreachable, but sequentially deciding the entries in � that will

minimise the approximation error is computationally very cheap.

This is the approach suggested by the matching pursuit (MP) algorithm family, initially pro-

posed by Mallat and Zhang [92]. At each iteration, the support of the sparse vector � is

increased by one based on the transform function that best correlates with the residual left

when the current approximation is subtracted from the signal. More specifically, starting from

a residual equivalent to the measurements, R(0) = y, an empty sparse code � = 0, and assuming

normalised transform columns kakk2 = 1, 8k, transform functions are iteratively chosen as

!(i) = argmax
1kK

|hR(i�1), aki|, (3.10)

providing an update for the sparse vector at the selected location

�(!(i)) = hR(i�1), a!(i)i, (3.11)
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and the update of the residual as

R(i) = R(i�1) � �(!(i))a!(i) . (3.12)

The approximation error ky �A�k22 decreases with each iteration until its energy falls below

a target precision or a maximum number of chosen transform functions is reached. Although

MP is extremely simple and its convergence is exponential, it requires an infinite number of

iterations to perfectly represent a signal whenA is non-orthogonal. This is because MP updates

the residual R(i) such that it is orthogonal only to the current function a!(i) at iteration i. If

successive functions ak are selected which are not orthogonal, the algorithm will select the same

functions multiple times.

The algorithm was extended to prevent the reuse of the same basis functions, accelerating

the convergence rate. This can be achieved by introducing an additional operation at each

iteration, involving the projection of the residual onto the span of the previously selected

subset of functions. This is known as orthogonal matching pursuit (OMP) [109]. Although

this step increases considerably the computational complexity due to the projection operator,

it guarantees convergence in at most N steps. In OMP it is therefore necessary to keep track of

the set ⌦ of selected basis functions. The OMP algorithm is summarised in algorithm 1, where

the orthogonalisation step is shown in line 4 with A+
⌦(i) denoting the pseudoinverse.

Algorithm 1: OMP algorithm for sparse coding
Input: y 2 CN - Signal to code

A - Sparse synthesis transformation from sparse representation to signal.
s and/or ✏ - Maximum number of sparse coe�cients and/or maximum approximation tolerance

Output: � - Sparse coding vector
Initialise: Iteration count i = 0, residual R(0) = y, function set ⌦(0) = ;, sparse code �(0) = 0
repeat

1. i i+ 1
2. !(i)  argmax1kK |hR(i�1),aki|
3. ⌦(i)  ⌦(i�1) [ a!(i)

4. �(i)  A+
⌦(i)x

5. R(i)  x�A⌦(i)�(i)

until i = s and/or ky �A�(i)k22  ✏;

Di↵erent extensions have been suggested, such as regularised orthogonal matching pursuit [100],

stagewise orthogonal matching pursuit [47] and compressive sampling orthogonal matching
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pursuit [99]. The objective is generally to accelerate convergence with alternative strategies to

detect the correct support ⌦ with as few iterations as possible.

l1 norm minimisation

A major inconvenience for solving equations (P0) and (P0-✏) is that they are non-convex prob-

lems. An alternative is to look for the solution to the closest problem that is convex, for which

the vast literature on convex optimisation would immediately apply. This was proposed by

Chen, Donoho and Saunders in their seminal paper [32] with the relaxation of the l0 norm by

the l1 norm, targeting the solutions to

min
�
ky �A�k22 s.t. k�k1  s, (P1)

min
�
k�k1 s.t. ky �A�k22  ✏. (P1-✏)

Finding solutions for these problems is generally referred to as the basis pursuit problem.

Under some circumstances the solutions to equations (P1) and (P1-✏) coincide with the optimal

minimiser of equations (P0) and (P0-✏). A rigorous proof for this equivalence can be found in

[27], but it can also be intuitively explained by considering the simple 2D problem shown in

figure 3.3. Assume we look for a sparse signal � 2 R2 of only two entries, for which we have

a single measurement y = � � 2 R acquired through a sparsifying matrix  2 R2⇥2 and

a sensing matrix � 2 R1⇥2. Letting the sparsifying matrix be represented by the Cartesian

coordinate axes, the infinite solution set resulting from the measurement could be represented

by a line. Solving the lp norm optimisation is interpreted as inflating a ball of di↵erent shapes

from the origin of the axes until it hits the solution set. Although the l1 norm diamond shape

is very di↵erent from the spiky shape of the lp norm, 0  p < 1, it also grows along the axes,

hence favouring a solution where only one coe�cient is non-zero. In higher dimensions the

problem becomes abstract, but a similar sparsity promoting behaviour of the l1 norm can be

expected.
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Figure 3.3: Optimisation result using
di↵erent norms. The intersection of the
solution set (in green) and a norm ball
represent a solution. The lp ball, 0 
p < 1, grows along the axes, hence find-
ing a sparse solution, but is not a convex
set. The l1 norm is a convex set that can
approximate the sparse result.

Lagrangian multipliers can be used to consider the unconstrained problem

min
�
ky �A�k22 + �k�k1. (3.13)

The solution of this l1 norm regularised least-squares (LS) problem can be found with di↵erent

approaches, such as homotopy methods [46], coordinate-wise descent methods [53], Bregman

iterative methods [107] and iterative shrinkage methods [13]. Similarly, equation (3.13) can be

recast as a quadratic program that can be solved with standard solvers relying for instance on

interior-point methods [143, 72]. Although the latter solution has advantages such as prob-

lem tractability and recovery guarantees, it is computationally more demanding than greedy

algorithms in general, especially for large scale problems.

Weighted norm minimisation

An alternative to l0 and l1 norm minimisation are weighted norm minimisation methods, which

exploit the simplicity of LS regularised minimisation. An analysis of this family of algorithms

can be found in [38] under the name of iteratively re-weighted least squares (IRLS), finding the

sparse code as � = W↵, where W is a diagonal weighting matrix, and ↵ is the result to the

LS problem

min
↵
k↵k22 s.t. ky �AW↵k22  ✏. (3.14)
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Equivalently, we can consider the unconstrained optimisation problem

min
↵
ky �AW↵k22 + �k↵k22. (3.15)

The algorithm to solve this problem is iterative and the solution at iteration i is given by

�(i) = W(i�1)↵(i�1) = ⇥(i�1)AH
⇣
A⇥(i�1)AH + �I

⌘�1
y, (3.16)

with ⇥ = WWH .

The disparities between di↵erent IRLS methods mostly lie in the definition of the weighting

matrix W, which is the variable incorporating prior knowledge about the solution. A popular

example of these algorithms is the FOCUSS algorithm introduced in [58], where W is chosen to

be W(i) = diag(�(i�1)) and can be proven to be equivalent to the minimisation of
P

n log |�(n)|.

A slight variation was proposed in [57] to address the minimisation of sparsity promoting lp

norms 0 < p < 1 with W(i�1) = diag(|�(i�1)|1�p/2).

The principle behind IRLS algorithms is that in order to minimise equation (3.15) where the

penalty can be replaced by kW�1�k22, the non-zero coe�cients of the solution � must concen-

trate at locations n where the diagonal entry [W�1]n,n is a small value. Starting close to a

particular sparse solution, the algorithm is expected to provide a sequence {�(i)}1i=0 converging

to it. A major drawback of this technique is that once a location has shrunk to zero it cannot

be recovered as a non-zero coe�cient, but some solutions exist that include a monotonically

decreasing constant for the weighting matrix.

3.4 Dictionary learning

The assumption that the signal of interest can be sparsely represented in some domain is the

foundation of CS, and it is therefore important to consider which form this domain should

take. Throughout the past decades, di↵erent forms of representation have emerged, leading in
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recent years to dictionary learning (DL). DL is the term given to the search for optimal sparse

signal transforms which are obtained through a training stage. In what follows we present a

brief history of signal transforms leading to DL and a summary of some of the DL algorithms

available. Further details can be found in the excellent reviews [118, 134].

3.4.1 From linear transforms to adaptive dictionaries

The choice of a transform for signal representation is crucial and involves a number of com-

promises. The use of orthogonal or bi-orthogonal transforms has long been favoured because

transform coe�cients are given by a simple inner product between the signal and the trans-

form or the transform inverse respectively. However, the use of complete bases has limitations

in representation flexibility as some signals may not be well encompassed by their modelling.

The desire for greater flexibility at the expense of mathematical complexity drove the switch

from complete transform bases to overcomplete dictionaries, and from transform functions to

dictionary atoms.

The convenience of orthogonal transforms

One of the most recurrent signal analysis tools is the Fourier transform, which was greatly

popularised in the 1960s with the emergence of the fast Fourier transform proposed by Cooley

and Tukey [34]. The decomposition of a signal into its global frequency content can sparsely

represent uniformly smooth signals, but is very ine�cient for capturing discontinuities given

that their energy is spread among several frequency coe�cients. Sharp discontinuities are rare

in natural signals, but the periodic assumption of finite signals for the computation of its

transform artificially creates them at the signal boundary. This naturally led to the use of the

discrete cosine transform (DCT), which avoids this phenomenon by assuming odd periodicity

and is the core ingredient of the JPEG image compression standard [146].

The following decades of the 1970s and 1980s centred the search of data simplicity on the
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data itself. Statistical tools such as principal component analysis [67] and most notably the

Karhunen-Loève transform [91] gained interest as they reduced the complexity of the signal on

a low dimensional subspace with minimum l2 norm error. Using the s first eigenvectors of the

eigenvalue decomposition of a signal’s covariance matrix, it can be seen as a low dimensional

Gaussian data fit. Although it is more powerful as a data sparsifier than the Fourier transform,

it is considerably more complex given its data-driven nature.

During the 1980s, it became clear that the search for simpler, sparser representations required

the departure from restrictive linear transforms leading to the design of non-linear transforms,

where the support of non-zero coe�cients is signal specific. Two major concepts are at the

origin of wavelet design, emerging with the specific purpose of non-linear sparse coding for

natural signals: localisation and multi-resolution.

The Fourier transform allows the identification of the di↵erent frequency content of a signal,

but it does not reveal where in time or space this content can be found. This lack of localisation

hinders compact signal representation, and results of this realisation were the short time Fourier

transform and Gabor filters [54]. Multi-resolution analysis has been the consequence of noticing

how natural signals exhibit fractal-like patterns, which repeat at di↵erent scales. Multi-scale

wavelet analysis was introduced by Grossman and Morlet in [60] as the scaling and translation

of a single function of finite support which could be designed to form an orthogonal basis.

Mallat [91] later extended this concept for optimal 1D multi-resolution signal analysis, and

most importantly, developed fast algorithms for wavelet decomposition enabling their practical

use. Even though at higher dimensions wavelet analysis loses its optimality, these advances

were adopted in the newer JPEG2000 image compression mechanism [127].

Wavelet analysis also su↵ers shortcomings, such as the lack of adaptability and geometric

invariance. The orthogonality condition limits the range of temporal or spatial support of the

functions which, if broken, allows for greater flexibility in representation. Wavelet packets [33]

suggested the use of such an extension to wavelets which, given a signal, could be reduced to

the optimal orthogonal subset, gaining adaptability but keeping the attractive properties of
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orthogonal wavelets. Translation and rotation sensitivity are further drawbacks of standard

wavelet transforms which were deemed unavoidable by orthogonal transforms in [126]. Thus

began work on overcomplete transforms with early examples such as the stationary wavelet

transform [9] seeking geometric invariance.

The flexibility of overcomplete dictionaries

With the development in the 1990s of greedy algorithms for equation (P0) and the influential

discovery that this problem could be approximated by the tractable equation (P1), the use

of overcomplete frames adopting the name of dictionaries was popularised. Allowing multiple

representations of the same signal in a dictionary of atoms opened new perspectives in coding

design, which could now be driven by a cost function, and markedly separated the task of

dictionary design from signal coding. Simple concatenations of bases could overcome what

used to be fundamental limitations. For instance, a Fourier transform was unable to compactly

represent discontinuities, but concatenating it with a Dirac basis could solve this problem.

Abandoning orthogonality paved the way for creative dictionary design. Two trends can cur-

rently be identified: the design of analytic dictionaries and data-driven adaptive dictionaries.

The former approach relies on a mathematical model of the data to generate the dictionary and

is usually characterised by e�cient mechanisms to implicitly compute transform coe�cients, as

well as robust theoretical guarantees for signal approximation. Some examples of this category

are curvelets [23], contourlets [40] and bandelets [74]. Data-driven dictionary design is more

recent, and draws from example observations of a signal to obtain an optimal representation.

Adaptive dictionaries are powerful as there is no reason to believe a single dictionary should be

optimal for all kinds of signals, but come at the price of increased processing complexity and

weaker theoretical guarantees. The search for optimal dictionaries for a specific set of training

signal is known as the dictionary learning (DL) problem.
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3.4.2 Dictionary learning problem

With the separation in the signal representation problem of dictionary design and coding stages,

a question naturally emerges: what is the optimal dictionary for a particular task and signal?

In this work DL will be applied on image patches, so we formulate the problem adopting the

notation Np to denote the dimension of a vectorised image patch. Given a set XT 2 CNp⇥T

of T observation signals of size Np, a DL algorithm looks for the dictionary D 2 CNp⇥K of K

atoms, that yields the sparse coding matrix �T 2 CK⇥T optimally solving

min
�T ,D

kXT �D�T k2F s.t. k�T
n k0  s 8n, (DL)

or similarly

min
�T ,D

k�T
n k0 s.t. kxT

n �D�T
n k22  ✏ 8n, (DL-✏)

where xT
n and �T

n are columns of XT and �T respectively. The superscript .T is chosen to

highlight the fact that the observation dataset and the corresponding sparse codes are training

signals, but it is dropped for the rest of the description for readability.

These problems are intricately related to sparse coding, but have the additional di�culty that,

on top of finding a sparse code, the dictionary for sparse representation has to be simultaneously

estimated. Similarly to the sparse coding problem, this is a non-convex optimisation statement

for which only heuristics exist. Commonly, the problem is simplified by solving for the sparse

code and the dictionary separately, and iteratively alternating their solutions until convergence.

3.4.3 Dictionary learning algorithms

Algorithms targeting equations (DL) and (DL-✏) are relatively recent, but can already be

distinguished based on the approach they take to provide an approximate solution. In the

following section we highlight probabilistic methods and clustering methods, which have been

among the most successful so far. We also note that the focus here is on learning general
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dictionaries, and do not mention methods that try to enforce a specific structure and properties

through a parametric training approach.

Probabilistic methods

One of the pioneering works on DL was presented by Olshausen and Field in [105]. Instead

of tackling equations (DL) and (DL-✏) they proposed a maximum likelihood (ML) learning

algorithm for natural images where the likelihood of the data is maximised as

max
D

(logP (xn|D)) = max
D

✓
log

Z

�n

P (xn|�n,D)P (�n)d�n

◆
. (3.17)

Two assumptions relate this expression to the general DL problem. First, assuming the priors

P (�n) are Laplacian distributions enforces sparsity on the coding vector. Also, if the cod-

ing approximation error is modelled as Gaussian zero-mean, the problem becomes the energy

optimisation

min
D,�n

E(xn,�n|D) = min
D,�n

kxn �D�nk22 + �k�nk1. (3.18)

As we have previously seen, the l1 norm can be seen as a convex relaxation of the l0 norm.

The alternate solution of equation (3.18) for �n and D separately is trivial. The solution of

the former can use a standard sparse coding technique whereas the latter requires solving a

simple LS problem. In order to account for statistics of a set of images, the method minimises

the average energy E [E(xn,�n|D)] over multiple signals. Although the learnt dictionary is not

guaranteed to be a global minimum, the result has deep implications unveiling an interesting

relationship between sparse coding and the human visual cortex, which is known to be an

e�cient image encoder.

A similar two-step approach is taken by the method of optimal directions (MOD) [50]. Consid-

ering the entire example dataset, it looks for a solution to equation (DL). The MOD introduces

two variations compared to the previous algorithm. The sparse coding stage is performed with
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OMP instead of gradient descent and a closed-form solution is formulated for the update of

the dictionary. Although both changes resulted in an accelerated convergence compared to the

previous approach, this method is also prone to local minima.

One problem of the alternating approach to dictionary and sparse code update is that if the

training set is extended with additional data the dictionary must be learnt from scratch again.

Also, batch processing of the entire training data can be computationally expensive for very

large training sets. Online dictionary learning [89] tries to solve these issues by optimising on

a subset of the training set, which is then progressively increased to account for additional

training data. Learnt dictionaries are successively reused as initialisations as the training set

is augmented, leading to a more e�cient training.

Clustering methods

A di↵erent family of learning algorithms is based on clustering methods. Although these meth-

ods also share the alternating mechanism to iteratively update the sparse code and the dic-

tionary, the dictionary is found as a clustering process rather than as a ML solution. One of

the most recurrent clustering methods, K-means clustering, was exploited in [121] as a vector

quantisation method for patch-based video coding. With the assumption that each patch is

represented by a single atom, each patch can trivially be assigned the closest atom and the

dictionary can subsequently be updated by individually modifying its atoms such that the dis-

tance to their assigned patches is minimised. Although e�cient, sparse coding with a single

atom is very restrictive.

The generalisation of this method was proposed with the K-SVD algorithm [2], by Aharon et

al.. The name was chosen to emphasise the close link with the K-means algorithm, the only

di↵erence lying on the fact that the dictionary update requires a singular value decomposition

(SVD) per dictionary atom instead of a mean operation. The general DL problem in equa-

tion (DL) is iteratively solved for � and D using a OMP sparse coding step and a dictionary

update step.
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This method is algorithmically very similar to the MOD algorithm but a fundamental di↵erence

lies in the dictionary update stage. For � fixed, the K-SVD algorithm decomposes the penalty

term by questioning one atom dk and its associated sparse codes given in row k of �. Denoting

this row vector as �k
t , the penalty can be rewritten as

kX�D�k2F =

�����X�
KX

i=1

dk�
k
t

�����

2

F

=

�����

 
X�

X

j 6=k

dj�
j
t

!
� dk�

k
t

�����

2

F

= kEk � dk�
k
t k2F ,

(3.19)

where Ek would be the approximation error if atom dk were to be removed from the dictionary.

With this separation, the approximation D� has been divided into K rank-1 matrices, only

one of which is being questioned for update. Finding the rank-1 approximation of Ek through

SVD and using it for the update of dk and xk
t would be the optimal update step. However, this

is likely to fill row xk
t , which we would like to keep as a sparse vector. A simple solution is to

only consider the indices !k of non-zero entries in xk
t , and define the shrunken vector xk

r and

matrix Ek
r . The rank-1 approximation of this new error matrix Ek

r provides then the optimal

update of dk and xk
r while the sparse coding support is either unchanged or reduced. This

shrinkage operation is illustrated in figure 3.4, and the full K-SVD algorithm is summarised in

algorithm 2.

3.5 Patch-based dictionary sparse coding

In this section we look at practical considerations of sparse recovery problems using dictionar-

ies. Specifically, we present the implications for sparse coding brought by overcompleteness,

redundancy and adaptability. The following results use the Batch-OMP implementation by

Rubinstein described in [119].
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Figure 3.4: K-SVD dictionary update step. The left hand side of the figure shows the decompo-
sition of the approximation error in Ek and the contribution from dk and �k

t through a rank-1
matrix. Updating dk and �k

t directly with an SVD decomposition of Ek does not guarantee
the maintenance of sparsity in �k

t . Instead, shrinking the matrices as shown in the right hand
side of the figure solves this problem as only the active support of �k

r is updated.

3.5.1 Overcompleteness

Consider the sparse recovery problem

min
�
kx�D�k22 s.t. k�k0  s, (3.20)

where D 2 CN⇥K , N  K, is a dictionary. The solution to this problem is trivial in the

complete, orthonormal case (N = K, DHD = I), given that the generalised Parseval’s theorem

holds between x in the signal domain and � in the sparsity domain. Therefore energy is

preserved upon basis transformation implying that kx � D�k22 = kDHx � �k22, and so the

best s sparse representation is trivially given by the s largest coe�cients of the transform

DHx. Energy preservation between domains is however violated as soon as N < K, which
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Algorithm 2: K-SVD algorithm for dictionary learning
Input: X 2 CN⇥T - Signal observation dataset

s and/or ✏ - Maximum number of sparse coe�cients ans/or maximum representation deviation from original signal
I - Maximum number of training iterations

Output: D - Trained dictionary
Initialise: Iteration count i = 0, dictionary D0, sparse code �0 = 0
repeat

1. i i+ 1
2. Independent OMP sparse code update:

�
(i)
n  argmin�n

kxn �D�nk22 s.t. k�nk0  s 8n
or �

(i)
n  argmin�n

k�nk0 s.t. kxn �D�nk22  ✏ 8n
3. Independent dictionary atom update with SVD decomposition:

!k  {n|1  n  N,�n
t (k) 6= 0}

Ek  X�
P

n 6=k dn�n
t

Construct Ek
r by choosing only columns assigned by !k

SVD decomposition: Ek
r = U�VT

d
(i)
k  u1

�
k,(i)
r  �(1, 1)⇥ v1

until i = I;

adds considerable flexibility to the sparse recovery problem given that it brings about a regime

where one signal can have multiple dictionary representations.

To illustrate this, let us assume we extract aN = 8⇥8 patch from figure 3.5a. We then use OMP

to solve equation (3.20) with a sparsity index s = 6. Lastly, we look at the mean squared error

(MSE) 1
N
kx�D�k22 of the result produced using discrete cosine transform (DCT) dictionaries

of di↵erent sizes. This experiment is repeated with 104 di↵erent patches and average results

are plotted in figure 3.5c. Examples of the test patches are displayed in figure 3.5b.

(a) Brain MR image (b) Sample patches (c) Reconstruction error

Figure 3.5: Dictionary overcompleteness translates into increased representation sparsity. The
plot in (c) shows the average representation error of 104 patches of size 8 ⇥ 8 from image (a)
using a DCT dictionary of di↵erent sizes and a sparsity index s = 6. Examples of image patches
are shown in (b).

Despite the advantage of domain transformation that an orthonormal dictionary provides, the
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dictionary representation becomes more accurate with increasing overcompleteness. In prac-

tice, natural signals are only approximately sparse, i.e. compressible, but not strictly sparse.

According to the CS literature, a penalty in signal reconstruction is paid which is proportional

to the accuracy of our sparse approximation [26]. It is therefore important to seek for the data

representations which are as accurate as possible for a given sparsity degree.

3.5.2 Redundancy

Redundant dictionaries are typically highly coherent, which immediately poses a problem for

sparse recovery as we have seen transform incoherence is a necessary requirement. If the focus

however is not on the recovery of the particular sparse code that generated the signal but on

any sparse code that will approximate it, redundant dictionaries can be useful.

We analyse this statement by considering an overcomplete DCT dictionary with K = 225

atoms of size N = 64. Given a sparsity degree s = 5, we synthesise an 8⇥ 8 patch by linearly

combining s randomly chosen atoms with random weights, and we then try to recover this

sparse code with OMP solving

min
�
k�k0 s.t. kx�D�k2  ✏, (3.21)

for ✏ = 10�5
p
N . We repeat this experiment 104 times and show the best and worst recoveries

obtained in terms of signal MSE, alongside with the synthetic signal patches.

The greedy approach of OMP to sparse recovery is sometimes able to perfectly find the sequence

of sparse coe�cients that make up the signal as shown in figure 3.6a. In this case, signal recovery

accuracy is down to precision error, well below the threshold set by ✏. However, the coherence

of the dictionary can sometimes make OMP fail dramatically in finding the original support of

the sparse code as shown in figure 3.6b. Nevertheless, the redundancy in the dictionary makes

it possible to find an alternative sparse configuration that still achieves the data consistency

level required in signal domain.
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(a) Best case recovery (b) Worst case recovery

Figure 3.6: OMP sparse recovery examples. Artificial sparse signals of size N = 8 ⇥ 8 are
synthesised from s = 5 randomly chosen dictionary atoms from a DCT dictionary of size
K = 225. Compared are the best (a) and worst (b) recoveries with respect to MSE, out of 104

tries.

This behaviour is analysed for di↵erent degrees of sparsity s in figure 3.7. The plots show

average results for the same experiment with 104 di↵erent patches. Despite the correct support

recovery decreasing quickly for s � 2 (figure 3.7a), the signal domain reconstruction accuracy

can be maintained below the predefined threshold (figure 3.7b) at the expense of a denser

representation � (figure 3.7c)1.

3.5.3 Adaptability

The main advantage of adaptive dictionaries over structured dictionaries is a sparser represen-

tation for a predefined set of signals. This comes at the cost of a computationally intensive

training process and the loss of structure, meaning that implicit and e�cient dictionary trans-

forms are not available and theoretical guarantees of the dictionary are more di�cult to derive.

In this section we compare the sparse representations of a structured dictionary with one that

is trained using the K-SVD algorithm. For the comparison we use the magnitude brain MR

1The sparsity of the result was measured as the number of non-zero coe�cients accounting for 99.9% of the
energy of the sparse code �.
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(a) Support recovery rate (b) Average MSE (c) Average sparsity

Figure 3.7: Average empirical OMP recovery performance using an overcomplete DCT dictio-
nary. The support recovery rate falls almost to zero for s/N = 10/64 = 0.15 sparsity (a). This
is due to the high degree of redundancy in the dictionary, which makes OMP choose sparse
coding configurations that are not the ones used to generate the original patches. Nevertheless,
OMP is able to maintain the predefined data consistency tolerance (b) by using a few additional
atoms relative to the original signal (c).

image shown in figure 3.5a, of size N = 256⇥ 256. Breaking the image down into Np = 8⇥ 8

overlapping patches and assuming patches wrap around the boundaries of the image, we have

a total of N signals to be coded arranged as column vectors in X 2 RNp⇥N . Extracting a

subset of T = 2 ⇥ 104 training patches from a regular grid on the image, we analyse the first

30 iterations of the K-SVD algorithm when we use it to solve equation (DL) with s = 5 for the

training of a K = 196 atom dictionary. The initial dictionary is chosen to be a DCT dictionary.

(a) Initial dictionary (b) Trained dictionary (c) Cost function RMSE

Figure 3.8: E↵ect of K-SVD training on dictionary and on training dataset. An initial over-
complete DCT dictionary (a), is trained to yield an adapted dictionary (b). The representation
accuracy of training signals improves over training iterations (c).

The e↵ects of the DL algorithm are patent in figure 3.8. It is clear how the RMSE of the
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representation cost function decreases through the iterations of the K-SVD algorithm. This

empirically confirms that the alternating strategy between a sparse coding stage and a dictio-

nary update stage is e↵ectively converging towards at least a local optimum of the problem.

Furthermore, in order to achieve this, the dictionary is changing the shape of its atoms, and

moves from the initially structured DCT dictionary towards one that incorporates new pat-

terns. The edges and blobs seen in the trained patches are known to be good natural image

sparsifiers.

We now focus on the implications that this adaptability has for the sparse approximation of

the entire image. Assuming that the training set of patches, which is approximately a third of

the full set, is a representative collection of the patches in the image, we should see the same

improvement in the representation error when comparing the coding errors of both dictionaries.

To recover a coded image from patches we average the contribution of overlapping patches and

plot the RMSE obtained from DCT coding and K-SVD coding with 30 iterations. Results are

plotted in figure 3.9 for a range of sparsity indices 1  s  8. We also show the accuracy of

recovering an image of only random noise with both dictionaries, to highlight how the lack of

structure in random features can not be well captured by sparse coding.

Figure 3.9: Sparse coding reconstruction
RMSE of brain MR image. Adapting a dic-
tionary to the brain image reduces the rep-
resentation error with respect to it, while
increasing the error with respect to data of
di↵erent nature, such as a Gaussian noise
image.

The gap in representation accuracy represents the gain that can be achieved through DL relative

to the initial structured dictionary. This gap is also visible in the error maps of the approximated

images for s = 3, shown in figure 3.10. Notice how most of the representation error concentrates

on edges and fine details of the image. This is expected given that those features are precisely
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the ones that will not abide to the sparsity criterion, and are therefore the first ones to be

penalised with the assumption of sparsity.

(a) DCT result (b) DCT error map (c) DL result (d) DL error map

Figure 3.10: Sparse coded approximations of a brain MR image using a DCT dictionary (a, b)
and a trained dictionary (c, d) with a sparsity index s = 3. Error maps show absolute value
di↵erences with respect to the original image.

3.6 CS and DL in dynamic MRI

MRI has been one of the most fruitful domains for the application of CS, mainly because it

o↵ers a solution to speed limitations but also because its acquisition mechanism lends itself

to CS requirements without any hardware modifications. In [84], Lustig showed how CS is

applicable to many di↵erent MR modalities, including structural 2D and dynamic MR. The

general CS acquisition and reconstruction problem can be formulated as looking for the image

x solving the problem

min
x
kFux� x̂uk22 s.t. kS(x)k0  s, (3.22)

where Fu is an undersampled DFT operator, x̂u is an undersampled k-space acquisition, and

S(.) is a sparsifying operator.

It can be shown that a random undersampling of the DFT operator has high probability of

ensuring incoherent sampling [120], which is a theoretical requirement for CS. Given that most

of the signal energy concentrates around low frequencies, it is recommended to use variable

density sampling which tries to mimic the expected energy distribution of the image [84]. This
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results in a low resolution version of the image corrupted by an overlaid random aliasing pattern

which can be treated as correlated noise. An example is shown in figure 3.11. For this reason,

the removal of aliasing in a CS acquisition of MRI has a strong relationship to a denoising

operation.
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Figure 3.11: Incoherent subsampling of k-space. A variable density distribution is chosen to
prioritise the acquisition of low-frequency content (a, b) from which a mask can be obtained
(c). The aliasing produced by zero-filling non-acquired samples is shown in (d).

3.6.1 Non-adaptive sparsity

The sparsifying transform S(.) can take many di↵erent forms and generally non-adaptive trans-

forms have initially been preferred for their orthogonality and fast operator properties. In the

spatial domain, operators known to have good sparsification properties such as wavelets and

TV have been suggested in pioneering methods [84]. The temporal dimension of cardiac cine

data is a great advantage for CS acquisitions, given that generally temporal information is more

redundant than spatial information. One of the most recurrent sparsifying transforms for the

temporal dimension is the temporal Fourier transform, leading to signal representation in x-f

domain. In [86], the k-t SPARSE method simultaneously ensures a sparse representation of

the reconstruction under a Fourier transform along the temporal dimension and a 2D wavelet

transform along space. Results at 7 fold acceleration factors were presented, albeit with some

visible aliasing.
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(a) Cardiac cine dataset (b) x-f sparsity (c) Wavelet sparsity (d) TV sparsity

Figure 3.12: A cardiac cine dataset (a) and some examples of non-adaptive sparsity (b, c, d).

Not many researchers have explored changes in the sparsity model that was proposed early on

by Lustig. Wavelet transforms are known to be suitable for natural image compression but

are certainly not optimal for the sparsification of all signals. Moreover, the smooth temporal

change of cardiac cine produces a compressible x-f support, but this transform does not contain

locality information about time changes, meaning that individual approximation errors in x-f

support spread among all time instances, which is an undesirable property. In [55], Gamper

et al. developed a stochastic rearrangement of k-space undersampling that produces very low

coherent aliasing. Results reported are all based on data sparsification in x-f space, and the

achievable acceleration factors were similar to those presented by Lustig with reduced aliasing.

There is a vast list of algorithms that have been proposed for an e�cient and more reliable solu-

tion of the optimisation problem proposed by Lustig. A good example is k-t FOCUSS [71, 69],

where the sparsity model is on the residual of the x-f support relative to the temporal aver-

age image. Instead of using a conjugate gradient approach to solve the optimisation problem

proposed by Lustig, the FOCUSS algorithm is used and the framework of k-t BLAST/SENSE

[136] is linked to the CS problem. On top of being a faster approach, it provides a better

approximation of the optimal sparse representation, hence producing better results. Never-

theless, using a temporal average image for the reconstruction can be unreliable and does not

allow much flexibility for the undersampling pattern. A later improvement suggests relying on

a reference fully sampled image [70], but this will not be discussed as it defies the purpose of

CS undersampling. This technique is also adapted to the case of parallel MRI and results show
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good quality reconstructions up to 8 fold acceleration factors using a 5 coil parallel acquisition.

One alternative to the x-f support sparsity model has been TV. The TV operator has been sug-

gested in several occasions for the sparsification of medical 2D images with the assumption that

they are piecewise constant [16, 124]. This idea was extended to dynamic MRI by Montefusco

et al. in [97]. Although much of the aliasing can be removed at acceleration factors as high as 16

fold, this comes at the price of inevitable blocky artifacts that distort the reconstruction. This

is because the assumption of piecewise constant sequences is very rigid and does not adhere

to the characteristics of real sequences. It has nevertheless been reported many times that a

TV sparsity constraint is a good auxiliary condition to guide the process towards a suitable

reconstruction [84], but relying exclusively on it is restrictive. Also, a major drawback is to

enforce the same level of sparsity in all three dimensions of the gradient, because it can be

very easily seen empirically that the temporal gradient is often sparser than spatial gradients

in cardiac cine images.

The majority of methods proposed assume a batch treatment of the dynamic data, in which

the entire acquisition is available prior to reconstruction. Some online methods have also been

suggested such as LS-CS [144], where a current observation frame is reconstructed from its

undersampled acquisition and an estimation of the previous temporal frame. Such methods

however cannot take advantage of the great redundancy o↵ered by the temporal dimension,

and clearly produce worse results than batch methods. This option would be desirable in real-

time imaging where post-processing must be done online, but the current state of MR scans

does not justify disregarding batch methods.

3.6.2 Adaptive sparsity

A considerable improvement in sparsity models has been brought by patch-based DL techniques

[117]. By imposing patches of the signal in the image domain to be sparsely represented

by a dictionary, the representation can benefit from the flexibility of overcompleteness and
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redundancy, and the advantages brought by adaptability. Data patches are generally coded

independently to save computational cost, and the full reconstruction handled as a two-step

process of patch coding and image update. The full problem can be posed as

min
�̄,D̄
kFuD̄�̄ � x̂uk22 s.t. k�̄k0  s, (3.23)

where D̄ and �̄ are composite dictionary and sparse coding vector that concatenate patch

contributions. It would be su�cient for Fu to be aD-RIP matrix to satisfy sampling incoherence

conditions. Although this has not been proven, results in [24, 115, 56] and empirical results

from literature suggest it is a plausible assumption.

The use of DL to reduce sampling requirements in MRI has been proposed for di↵erent imaging

techniques. In [41], the use of a dictionary is employed for an adaptive sparse representation

of T1 and T2 parameter mapping of brain imaging. It has also been applied to directly code

image intensity by Ravishankar et al. in [117], where an iterative process alternates between

the patch-based sparsity in image domain and the consistency of acquired k-space locations.

This method was shown to perform better than a fixed basis transform counterpart algorithm

on 2D structural MRI.

Adaptive spatio-temporal sparsity

In this work we explore the use of a single spatio-temporal dictionary to accurately code any time

instance of the sequence and allow a CS reconstruction from undersampled data. Additionally,

the data representation is regularised with a temporal TV constraint to further exploit the

temporal redundancy within the data.

In the course of our investigation, alternative methods for DL applied to dynamic MRI have

emerged. In [147], 3D spatio-temporal dictionaries are used in conjunction with a TV in a

very similar manner as presented in this work. The authors propose to sequentially update

the patch-based dictionary to individual temporal frames, which although desirable, it consid-
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erably increases computational complexity. This is an idea that was proposed earlier on for

natural video denoising [111]. The update of a dictionary for natural video is critical given

that interframe information is expected to change dramatically, but in cardiac cine MR signal

characteristics undergo minimal and locally constrained changes.

In [81] the authors consider training temporal signatures of MR data. This is a slightly di↵erent

approach to dictionary training, but it could be related to the proposed method by assuming

single pixel temporal patches of size 1 ⇥ 1 ⇥ Nt, where Nt is the number of temporal frames

in the scan. However, even though the temporal dimension is generally regarded as the one

containing the largest redundancy in cardiac cine, spatial redundancy should also be exploited.

Moreover, considering a joint spatio-temporal processing is expected to enhance reconstruction

homogeneity compared to spatial only or temporal only processing.

3.7 Conclusion

In this chapter we have seen how implicit image redundancy, expressed in terms of compressibil-

ity, can be exploited to reduce sampling requirements below the traditional Nyquist rate. The

non-linear sampling theory of CS imposes three conditions for its application: signal sparsity,

sampling incoherence, and non-linear reconstruction. Additionally, we have discussed the tran-

sition in sparse representation from complete fixed basis transforms to overcomplete adaptive

dictionaries, and the advantages in representation flexibility this entails. Some of the attempts

at employing CS and DL for MRI acquisition acceleration have been described, with a par-

ticular focus on the case of dynamic cardiac MRI. In the following three chapters, we present

our contribution to the application of DL for cardiac cine MRI reconstruction in single and

multi-coil setups, and its combination with analysis processes.
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4.1 Introduction

As introduced in chapter 3, the developing mathematical field of CS [44, 26] for modern sampling

has been shown to be naturally applicable to the problem of MRI acceleration [84]. Central

to this approach is the assumption of sparsity of the reconstructed data under some transform

domain, and the performance of the reconstruction relies heavily on the suitability of the

sparsity model in terms of the approximation error it entails. The potential of CS methods

is widely recognised, although exploration of the choice of sparsity model has been somewhat

limited. Sparsity is often treated as synonymous with retrospective compressibility and this

can lead to crude models that do not adhere well to the characteristics of the data. For

high undersampling factors, the reconstruction relies strongly on the chosen a priori sparsity

assumption, and models that are not representative will recover images with features that are

unexpected in their fully sampled counterparts. Methods based on wavelets or TV [84, 97, 1], for

instance, are susceptible of generating blocky spatial artefacts, and very sparse x-f supports will

miss out on rapid temporal changes [71, 138]. Adaptive techniques exploiting the developments

of DL have brought a step-change in performance of reconstruction from undersampled MRI

data by tailoring an overcomplete set of basis functions to provide higher levels of sparsity than

those achievable by fixed basis transforms.

In this chapter, a sparsity model is imposed for the reconstruction of complex-valued cardiac

cine images from Cartesian undersampled MR data with a combination of patch-based learnt

dictionaries and temporal gradient. A single spatio-temporal dictionary is trained for the en-

coding of the whole data set. In addition, the temporal gradient transform is explored as an

auxiliary sparsifying transform. This is mainly motivated by the observation from sample data

sets that temporal gradients provide a sparser representation than spatial gradients. Addition-

ally, the use of a penalty sparsity term that considers the entire temporal dimension of the data

can enforce temporal cohesion globally in a way that patch-based dictionaries cannot. This

is particularly beneficial when using independent subsamples for each temporal frame, as this

results in artefacts that flicker in time which tend to increase the temporal complexity of the



64 Chapter 4. Dictionary learning for dynamic MRI

target signal.

The aim of this study is to analyse the potential of the use of dictionaries in the context

of cardiac cine images. To carry out this analysis, synthetic experiments are arranged in

which data acquired using parallel coils is retrospectively undersampled and reconstructed

assuming a single coil setup. Conclusions drawn from these experiments should therefore not

be taken as directly implementable in a real scan scenario, but will provide a simple paradigm

for benchmarking the reconstruction capabilities of dictionaries. A practical implementation of

DL for MRI should consider the extension of this technique to multi-coil MR technology, and

this will be discussed in chapter 5.

This chapter is organised as follows. The two sparsifying transforms exploited in the algo-

rithm proposed are described in section 4.2 and the optimisation problem they pose is stated

in section 4.3. In section 4.4 we provide the details necessary for the implementation of the

algorithm, which we term dictionary learning with temporal gradient (DLTG), as well as pro-

viding comments on its computational complexity. To conclude, the performance of the novel

technique is analysed in section 4.5, where it is thoroughly compared with the k-t FOCUSS

algorithm, a method that also applies compressed sensing to dynamic cardiac MRI but uses a

fixed basis, non-adaptive transform for sparse modelling. The influence of tuning parameters

on results is also examined.

4.2 Sparsifying transforms for CS dynamic MRI

Throughout the chapter, we will assume a sequence of images can be seen as Fourier transforms

of 2D Nx ⇥ Ny k-space samples acquired at Nt di↵erent time instances that are stacked as a

3D volume. Let us refer to the k-space of a fully sampled data set compliant with the Nyquist

sampling rate as the column vector x̂f 2 CN , produced by the concatenation of columns in the

3D volume where N = Nx⇥Ny⇥Nt. The vector sequence in image space xf 2 CN is related to

the k-space data by x̂f = Fxf +n, where F performs a 2D DFT on each temporal frame and n
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is additive white Gaussian (AWG) acquisition noise that is complex. Now assume only a subset

⌦ of k-space is acquired, meaning that x̂u = Mx̂f is the only data available for reconstruction.

The undersampling mask M 2 RM⇥N ,M ⌧ N , contains the rows from the identity matrix

that correspond to the samples of x̂f that are in ⌦. The CS dynamic MRI reconstruction is

given by the solution to

min
x
kS(x)k0 s.t. kFux� x̂uk22 < ✏, (4.1)

where we have used MF = Fu and ✏ is a small constant.

There is a direct relationship between the sparsity degree provided by the transform S(.)

and the minimum number of samples necessary for perfect reconstruction [27]. The sparser

the model chosen, the higher the achievable acceleration rates will be. In this section, two

sparsifying transforms that are well suited to the problem of dynamic cardiac imaging are

described. First, an adaptive patch-based transform derived from DL theory is presented for

the case of dynamic MR complex data. Then, the temporal gradient transform is proposed as

a suitable global sparsity model for cardiac cine images that can make reconstructions converge

faster and improve performance at high undersampling rates.

4.2.1 Adaptive spatio-temporal sparsity

DL was introduced in section 3.4 as a process to adapt an initial set of basis functions to a

specific signal through a training stage such that it will provide a sparse representation of that

signal. Denote training patches xT
n 2 RNp , n = 1, ..., T , as column vectors of size Np to be

used for the training of a dictionary D 2 RNp⇥K of K atoms arranged as column vectors. The

training of a real-valued dictionary adapted to that training set can be stated as

min
�T ,D

k�T
n k0 s.t. kxT

n �D�T
n k22  ✏, 8n, (DL-✏)

where �T 2 RK⇥T is a matrix gathering the sparse representation of xT
n as column vectors

�T
n . The superscript T specifies that these are variables for training. After this process, the
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dictionary can be used to find an approximation of a real-valued data set as a sparse coding

problem with a greedy l0 minimisation technique such as OMP.

Recently, DL has been used for 2D structural MR image reconstruction largely outperforming

competing techniques based on complete bases and fixed transforms [117]. This framework is

extended to the case of MR sequences in [21] with the use of spatio-temporal 3D dictionaries,

but only the reconstruction of synthetic real-valued sequences without a phase component is

addressed. This is not feasible in practice since the observed k-space samples always relate to

a complex image.

The training of complex-valued dictionaries that are suitable for MR data representation is

possible defining � and D as complex-valued variables as originally proposed in [117]. Instead,

we carry out this representation by using a single real-valued dictionary which is trained on

real and imaginary parts of MR data for their independent coding. In section 4.5.5 we look at

the di↵erences between these two learning and coding strategies for the processing of MR data.

4.2.2 Temporal gradient sparsity

An additional sparsity constraint can be imposed on the temporal finite di↵erences (i.e. the

first order temporal gradient) of the data set. Many authors have explored TV for imposing

sparsity constraints on a CS reconstruction because it provides sensible sparsity levels, but

also because its optimisation can be extremely e�cient [84, 97, 87, 155]. In many cases, TV

is not the main sparsifying transform but rather an auxiliary constraint that can stabilise and

correct the solution provided by the main transform. This operation considers an equally

weighted combination of the pixel-wise finite di↵erences along space and time, but this is rarely

a sensible assumption in cardiac cine images because spatial and temporal gradients, which

make up the individual dimensions of TV, will usually have di↵erent sparsity levels.

Let us consider a complex-valued single slice cardiac sequence to be a volume X3D of entries

(X3D)g,h,i = Xg,h,i in the x, y, and t axes. We denote (rxX
3D)g,h,i = Xg+1,h,i �Xg,h,i the finite
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di↵erence result of X3D along dimension x and similarly (ryX
3D)g,h,i = Xg,h+1,i � Xg,h,i and

(rtX
3D)g,h,i = Xg,h,i+1 �Xg,h,i along dimensions y and t. Expressing (rxx)g,h,i, (ryx)g,h,i and

(rtx)g,h,i as equivalent expressions when x is a concatenated column vector version of X3D,

and |x| referring to the element-wise absolute value of the complex vector x, figure 4.1 shows

the decay of magnitude coe�cients of the three transforms, ordered and normalised. This

implies the signal content is more compactly represented in the temporal gradient domain.

Another visualisation of the di↵erence in TV for the three dimensions considered is presented

in figure 4.2, where significant coe�cients are much more visibly present in spatial dimensions

than in the temporal dimension.

Figure 4.1: Comparison of the decay
in transform coe�cients of transforms
rx, ry and rt. The latter shows the
fastest decay, implying that the sig-
nal energy concentrates in fewer coef-
ficients than in the other gradient di-
mensions.

(a) Cine stack (b) Gradient in x (c) Gradient in y (d) Gradient in t

Figure 4.2: Visualisation of significant non-zero coe�cients of transforms rx, ry and rt.
Important coe�cients in rt are concentrated around the dynamic region of the beating heart,
whereas changes in other locations are kept below 0.1 and could be attributed to noise.

4.3 Reconstruction with sparse model

The problem posed is to simultaneously find a solution data set x 2 CN such that its real and

imaginary parts <(x) and =(x) are sparsely represented with a single dictionary D, which is to
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be learnt. Additionally, we penalise solutions for which krt|x|k1 is large and favour those that

are overall consistent with the M k-space acquisitions Fux = x̂u. This is a similar approach as

that in [117], but instead of using 2D spatial dictionaries we use 3D spatio-temporal dictionaries

and further exploit temporal redundancy in the cardiac cine data with an auxiliary temporal

gradient constraint.

Let us define as Rn 2 RNp⇥N an operator that extracts as a column vector the 3D patch in the

data set starting from pixel location n. We use � = �< + j�= 2 CNp⇥N to denote the sparse

coding of x, where each column �n = �<,n+j�=,n in � is the coding of patch Rnx. Throughout

the description we assume that the step size for patch extraction is 1 and that patches wrap

around edges, meaning that n = 1, ..., N , and that each pixel in x is covered by Np di↵erent

patches.

The problem can be expressed as the following global statement:

min
D,�<,�=

x

NX

n=1

�
k�<,nk0 + k�=,nk0

�
+⌫kFux� x̂uk22 + µkrt|x|k1

s.t.

8
>><

>>:

kRn<(x)�D�<,nk22 < ✏, 8n

kRn=(x)�D�=,nk22 < ✏, 8n
. (4.2)

This optimisation problem is non-convex, so we opt to split it into three simpler subproblems

that are either convex or can e�ciently be solved with greedy methods. Alternating the solution

of these three subproblems iteratively will yield an approximation to equation (4.2). Without

modification, we introduce an auxiliary variable xTG and write

min
D,�<,�=
x,xTG

NX

n=1

�
k�<,nk0 + k�=,nk0

�
+⌫kFux� x̂uk22 + µkrt|xTG|k1

s.t.

8
>>>>>><

>>>>>>:

kRn<(x)�D�<,nk22 < ✏, 8n

kRn=(x)�D�=,nk22 < ✏, 8n

x = xTG

. (4.3)
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Then, the new constraint is relaxed and included as a quadratic penalty term:

min
D,�<,�=
x,xTG

NX

n=1

�
k�<,nk0 + k�=,nk0

�
+⌫kFux� x̂uk22 + µkrt|xTG|k1 + �kx� xTGk22

s.t.

8
>><

>>:

kRn<(x)�D�<,nk22 < ✏, 8n

kRn=(x)�D�=,nk22 < ✏, 8n
. (4.4)

There are four tuning parameters in equation (4.4): ⌫, µ, � and ✏. These control respec-

tively the consistency with the acquired k-space samples, the temporal gradient sparsity of the

dummy variable xTG, the distance of the result x with respect to this dummy variable, and

the representation accuracy of D, �< and �=. The last parameter is inversely related to the

sparsity allowed in the dictionary representation.

In dynamic cardiac imaging as in other structural MRI modalities, the information of most

interest is provided by the magnitude part of the complex signal formed. An appealing ap-

proach would therefore be to define the problem such that only a magnitude sequence |x| is

reconstructed discarding the reconstruction of its phase information. This is simpler than the

problem posed in equation (4.4) because the number of unknowns is reduced by a half and the

system of equations becomes better determined, which is why some solutions proposed have

adopted this approach [6, 22]. However, this problem statement overlooks the nature of the

observed data x̂u. The samples acquired in k-space always correspond in practice to a complex

image, so trying to infer the k-space of a magnitude signal from an undersampled version of

its complex representation is not a viable option. Alternatively, the reconstructed x has to

be complex if it is being inferred from its undersampled k-space, irrespective of the clinical

usefulness of its magnitude and phase information.
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4.4 DLTG algorithm

Equation (4.4) is broken down into three simpler subproblems. The dictionary learning with

temporal gradient (DLTG) algorithm iteratively refines a solution in three separate steps that

each solve the global problem with some free variables fixed.

4.4.1 Dictionary training and sparse coding

Begin by assuming x and xTG fixed. The only free variables are D, �< and �=. In words, we

seek the dictionary and sparse codings that will represent both sparsely and accurately the real

and imaginary parts of the data set, or formally

min
D,�<,�=

NX

n=1

�
k�<,nk0 + k�=,nk0

�
s.t.

8
>><

>>:

kRn<(x)�D�<,nk22 < ✏, 8n

kRn=(x)�D�=,nk22 < ✏, 8n
. (4.5)

This is the general dictionary learning problem, where the training data are patches Rn<(x)

and Rn=(x). The K-SVD algorithm [2] can solve equation (4.5). For an undersampling mask

providing su�cient aliasing incoherence, aliasing will have noise-like properties that the trained

dictionary will not be able to approximate with a sparse representation. Therefore, a sparse

approximation of the corrupted sequence x using the outcome dictionary from equation (4.5)

will tend to reproduce anatomical structure and miss features derived from aliasing.

In practice, a reduced number of patches are used as training data for e�ciency purposes

extracted from a regular grid on <(x) and =(x). Once a dictionary D has been learnt from the

training set, it can be used to code real and imaginary parts of the entire data set independently

with OMP:

min
�<

NX

n=1

k�<,nk0 s.t. kRn<(x)�D�<,nk22 < ✏, 8n, (4.6)

min
�=

NX

n=1

k�=,nk0 s.t. kRn=(x)�D�=,nk22 < ✏, 8n. (4.7)
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4.4.2 Temporal gradient filtering

Let us now fix variables D, �<, �= and x, and minimise the functional with respect to xTG.

The problem becomes

min
xTG

krt|xTG|k1 + ⌘kx� xTGk22, (4.8)

with ⌘ = �/µ. The magnitude of the dummy variable xTG is driven towards sparsity in its

temporal gradient while minimising the quadratic distance with respect to solution x. The

phase di↵erence between x and xTG will not alter the first term in equation (4.8), so we fix the

phase component xTG = x and solve

min
|xTG|
krt|xTG|k1 + ⌘k|x|� |xTG|k22. (4.9)

This can be very e�ciently solved by the primal-dual method in [29] with an iterative clipping

algorithm. Specifically, the following two computations are iterated:

|xTG|(i+1) = |x|�rT
t z

(i), (4.10)

z(i+1) = clip

✓
z(i) +

1

↵
rt|xTG|(i+1),

1

2⌘

◆
, (4.11)

for i � 0, z(0) = 0 and ↵ � maxeig(rtrT
t ), where maxeig(.) finds the maximum eigenvalue of

a matrix. For details on the derivation of this algorithm we refer to [29].

4.4.3 Acquisition data consistency

The last subproblem looks at the case where x is the only free variable. Equation (4.4) now

becomes

min
x
kFux� x̂uk22 +

�

⌫
kx� xTGk22 s.t.

8
>><

>>:

kRn<(x)�D�<,nk22 < ✏ 8n

kRn=(x)�D�=,nk22 < ✏ 8n
. (4.12)
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This can be rewritten as the following unconstrained optimisation problem:

min
x

NX

n=1

�
kRn<(x)�D�<,nk22 + kRn=(x)�D�=,nk22

�
+ ⌫ 0kFux� x̂uk22 + �0kx� xTGk22.

(4.13)

Referring to this functional as f , the optimum solution is the one for which @f
@<(x) =

@f
@=(x) = 0.

Let us solve for @f
@<(x) = 0:

 
NX

n=1

RT
nRn + ⌫ 0FH

u Fu + �0

!
<(x) =

NX

n=1

RT
nD�<,n + ⌫ 0FH

u <(x̂u) + �0<(xTG). (4.14)

Taking the Fourier transform on both sides of equation (4.14), we have

 
F

NX

n=1

RT
nRnF

H + ⌫ 0FFH
u FuF

H + �0FFH

!
F<(x)

= F
NX

n=1

RT
nD�<,n + ⌫ 0FFH

u <(x̂u) + �0F<(xTG), (4.15)

Replacing < by = in equation (4.15) we obtain the solution for the k-space of the imaginary

part, hence we can write the k-space solution of complex variable x as

 
F

NX

n=1

RT
nRnF

H + �0FFH + ⌫ 0FFH
u FuF

H

!
x̂

= F
NX

n=1

RT
nD(�<,n + j�=,n) + �0FxTG + ⌫ 0FFH

u x̂u. (4.16)

To better understand this expression we can use the following simplifications. The term FFH
u x̂u

is the zero-filled k-space acquisition which will be denoted as x̂z. Assuming patches overlap

and that the operator Rn wraps around the boundaries such that each pixel is represented by

Np patches, the term F
PN

n=1 R
T
nRnF

H is simply the weighted N ⇥ N identity matrix NpIN .

Moreover, FFH
u FuF

H is equivalent to a N ⇥N diagonal matrix containing a 1 in the diagonal

whenever a k-space location was acquired or a 0 otherwise. The simplifications x̂TG = FxTG
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and IN = FFH are trivial, and also notice that the expression F
PN

n=1 R
T
nD�n

Np
represents the

Fourier transform of the solution obtained by averaging the contribution of all coded patches

relocated to their corresponding position within the data set. For simplicity we refer to this

solution as xD, and x̂D is its Fourier representation. The final expression for x̂ is therefore

x̂(k) =

8
>>>>><

>>>>>:

x̂D(k) +
�0

Np
x̂TG(k) +

⌫0

Np
x̂z(k)

1 + �0

Np
+ ⌫0

Np

, k 2 ⌦,

x̂D(k) +
�0

Np
x̂TG(k)

1 + �0

Np

, k /2 ⌦.

(4.17)

The update of solution x involves an average between the dictionary sparse solution x̂D, the

temporal gradient sparse solution x̂TG, and the original acquisitions x̂z for k-space locations

that were acquired. This means that this step requires the tuning of parameters ⌫ 0 and �0. To

simplify this task, in the implementation of the algorithm we choose to update x̂ using only x̂z

and either x̂D or x̂TG with a single constant � depending on which solution was updated last.

Equation (4.17) then becomes

x̂(k) =

8
><

>:

x̂0(k) + �x̂z(k)

1 + �
, k 2 ⌦,

x̂0(k), k /2 ⌦,

(4.18)

with x̂0 alternating between x̂D and x̂TG. Noise standard deviation is taken into account by

the regularisation parameter � = q/�, where q is a constant that can be set empirically as is

shown in section 4.5.3.

4.4.4 Algorithm design

Figure 4.3 describes the ordering in which these three steps are performed in the DLTG algo-

rithm. The data consistency step is interleaved between the other two steps and the temporal

gradient (TG) module is iterated in an inner loop fashion to force a slow and smooth conver-

gence towards a result jointly satisfying the sparse temporal gradient and the data consistency
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constraints. Additionally, a DLMRI version of the method in which the TG term is ignored

(equivalent to setting � = �0 = 0) is also presented. Notice that this di↵ers from the DLMRI

method presented in [117] in that real and imaginary parts are coded independently with a

real-valued dictionary.

Figure 4.3: Algorithm flowchart for the DLTG (solid arrows) and the DLMRI (dashed arrows)
algorithms.

The algorithm is initialised with the zero-filled sequence xz and the stopping criteria S1 and S2

can either be convergence to a stable solution or a maximum number of iterations I1 and I2

for outer and inner loops respectively. We use I2 = 10 and a large number of outer iterations

I1 > 100 to guarantee the end result reaches a stable solution. All the results below use small
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values for constants ✏ and ⌘ to ensure a slow convergence towards a result tightly adhering to

the sparsity model imposed. The dictionary in the training stage is initialised at each iteration

with an overcomplete DCT dictionary and coding matrices �< and �= are initially 0.

4.4.5 Algorithm complexity

The complexity of the DLMRI algorithm, which constitutes the first half of the DLTG algo-

rithm, is dominated by the dictionary learning and sparse coding steps. The training of the

dictionary and sparse coding of patches are performed using the e�cient implementations of

the K-SVD and Batch-OMP algorithms made available by R. Rubinstein [119, 113]. In both

cases, the computation is dominated by the cost of sparse coding a patch of size Np with a

dictionary of K atoms. The number of operations necessary for this can be described as a

function of s OMP iterations. The stopping criterion described in section 4.3 for sparse coding

is the data consistency level ✏, and although the relationship between s and ✏ is non-trivial

because of its non-linearity, it is easily observed that a larger ✏ implies fewer OMP iterations

for a given problem.

Batch-OMP precomputes the matrix DTD to save processing time when coding large sets of

patches with the same dictionary. This first step requires NpK
2 operations. The coding of

a real-valued patch that requires s OMP iterations with Batch-OMP involves approximately

2NpK + s2K + s3 operations [119]. Given that we code a total of N patches twice for each

data set, we can provide the average number of operations per data set coding as NpK
2 +

2N(2NpK + s̄2K + s̄3), where s̄ is the average number of OMP iterations for coding real

and imaginary parts. Also, a K-SVD training iteration for NT training patches will involve

approximately NT (2NpK + s2K + s3) operations for s OMP iterations [119], so on average we

have ITNT (2NpK + s̄2K + s̄3) operations. The data consistency step only involves two DFTs

per temporal frame and averaging operations that are negligible compared to the sparse coding

step. The extra computation for solving equation (4.8) in the DLTG case is also very small since

only sparse matrix-vector multiplications and clipping operations are required. In section 4.5.7
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we provide empirical results on the runtime of the algorithm.

4.5 Experiments and results

4.5.1 Experimental setup

Fully sampled short-axis cardiac cine scans were acquired from 10 subjects for the analysis

of the proposed method. All data sets contain 30 temporal frames of size 256 ⇥ 256 (i.e.

N = 256⇥ 256⇥ 30) with a 320⇥ 320 mm2 field of view and 10 mm slice thickness, and were

generated using an optimal combination of 32-channel data. For the 10 subjects the mean ±

standard deviation for heart rate was 62± 10.2 bpm, with the 30 frames giving a temporal rate

of 33 ± 5.5 ms. The raw multi-coil data was reconstructed using SENSE [112] with no k-space

undersampling and retrospective gating. Coil sensitivity maps were normalised to a body coil

image to produce a single complex-valued image set that could then either be back-transformed

to regenerate complex k-space samples or further processed to form final magnitude images.

These scans contain unavoidable k-space acquisition noise and this formally preludes quantita-

tive comparison between a given reconstruction and the fully sampled data set. Nonetheless,

for the purposes of evaluation we will treat the fully sampled data as ground truth (i.e. treat

them as if noiseless). To assess noisy scenarios we then artificially add noise to k-space. The

quality of all reconstructions x will be measured with PSNR(x) = 10 log
⇣

1
kxf�xk22/N

⌘
, where xf

denotes the fully sampled data set. An example of a data set frame is shown in figure 4.4, where

we highlight a ROI and a vertical line, which will respectively serve for evaluations within a

tight region around the heart and the temporal profile of the line. For reconstructions with-

out artificial noise, visual inspection of magnitude and phase information as well as the mean

structural similarity index (MSSIM) [148] will also be considered, which provides a measure of

similarity that highlights structural information perception.

Throughout this section, fully sampled k-space data is artificially subsampled using 2D binary
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Figure 4.4: Example of
2D temporal frame of
one of the data sets used
for testing. A ROI and
a profile line are defined
that will be used for
evaluations.

undersampling masks M. We only consider the case of Cartesian undersampling, which is the

most common in practice, although more elaborate sampling strategies like radial or spiral

[84, 16] could equally be applicable with modifications on the data consistency step and using

non-uniform Fourier transforms [52]. Even though greater aliasing incoherence can be achieved

with 2D k-space undersampling [84] frequency encodes can be considered instantaneous relative

to phase encodes, so acceleration is only meaningful through phase encode undersampling.

It has been claimed in the past that drawing independent realisations of this random experiment

for each temporal frame significantly increases eddy currents. In [11], this issue is remedied

by pairing consecutive random phase encodes. At each frame, the 8 lowest spatial frequencies

are always acquired and other frequencies have a probability of being acquired determined

by a Gaussian variable density function that is marginally o↵set with an added bias, such

that the probability of acquisition never reaches zero even at the highest frequencies. An

implementation of this approach can be found in [12], and an example of a 2D mask and its

e↵ect on the magnitude of a temporal frame is shown in figure 4.5 for a 6 fold acceleration.

The proposed method is compared to k-t FOCUSS [71] as a representative algorithm of the CS

dynamic MRI methods using fixed basis sparsifying transforms. The implementation of this

algorithm is publicly available in [12]. A single regularisation parameter can be tuned to trade

between a k-space data consistency term and an x-f domain sparsity term, and even though

this parameter cannot be optimally determined a priori, we sweep across a large spectrum of

values in all experiments and only show the best reconstruction in order to always compare to

the best possible scenario.
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(a) Fully sampled (b) Undersampling mask (c) Zero-filled result

Figure 4.5: Example of a magnitude temporal frame from one of the data sets analysed (a).
The undersampling mask (b) applied in k-space reduces acquisition time but introduces aliasing
in image space (c). All figures show a 2D frame on the left hand side and the temporal profile
across the dashed line on the right hand side.

In contrast, DLTG results are not optimised individually and, unless otherwise stated, its

parameters are kept constant across all experiments. We use NT = 104 patches of size Np = 4⇥

4⇥4 to train dictionaries of K = 600 atoms. These parameters were chosen based on empirical

trade-o↵s between performance and e�ciency. The regularisation parameters for dictionary

approximation accuracy and temporal gradient sparsity (see equations (4.5) and (4.8)) are

✏ = 0.007 and ⌘ = 4 ⇥ 10�4, which allows to analyse the potential of the model by tightly

adhering the result to it as will be shown in 4.5.7.

4.5.2 Reconstruction of individual data sets

The first experiment considers the simple case where data sets are undersampled and recon-

structed with di↵erent acceleration factors without added noise. Denote R the acceleration

factor, figure 4.6a plots the mean PSNR of the reconstructions and one standard deviation

away from them against the sampling ratio (1/R) for the 10 subjects considered. For this par-

ticular case, the noise regularisation factor is set to �!1, such that in the DLMRI and DLTG

algorithms all k-space samples that are acquired are constantly fed back to the reconstruction’s

k-space in the data consistency step without any weighting.

Even though it is ideally optimised, the k-t FOCUSS algorithm is outperformed by the DLMRI
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Figure 4.6: Mean and standard deviation PSNR performance of reconstructions from 10 scans
retrospectively undersampled without added noise. Results are shown for the whole data sets
(a) and within a ROI around the heart (b).

and DLTG algorithms in all experiments. A further comparison made in table 4.1 using the

MSSIM metric supports this conclusion. MSSIM can quantify structural similarity between two

images better than PSNR by comparing luminance and contrast in patches. For our results we

consider the mean MSSIM of the 30 temporal frames in each data set. Although the standard

deviations of the PSNR and MSSIM results are relatively large, the rank order for both figures

of merit for the three methods and for each individual reconstruction was DLTG>DLMRI>k-t

FOCUSS.

Table 4.1: MSSIM comparison (mean ± std ) ⇥10�2.

Sampling factor 1/R k-t FOCUSS DLMRI DLTG

0.25 95.8 ± 2.5 97.3 ± 0.8 97.4 ± 1.0
0.16 93.9 ± 3.4 96.2 ± 0.9 96.5 ± 1.1
0.12 91.4 ± 6.0 95.0 ± 1.1 95.5 ± 1.1
0.10 89.9 ± 5.4 93.3 ± 1.6 94.4 ± 1.3
0.08 86.2 ± 6.3 91.2 ± 1.8 93.1 ± 1.3
0.06 80.5 ± 7.4 87.7 ± 3.0 91.0 ± 1.4

The improvement with respect to k-t FOCUSS is also evident from the visual comparison

shown in figure 4.7 of a frame from a data set that has been accelerated by 8. It is nevertheless

harder to visually identify the benefit of enforcing TG sparsity in DLTG relative to the DLMRI
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method. To better understand in what way the TG term modifies the solution of DLMRI,

we compare in figure 4.6b the same measure when only the ROI around the heart shown in

figure 4.4 is considered. For this region, reconstruction performances of the DLMRI and the

DLTG algorithms are almost the same except at very high acceleration rates.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 4.7: Visual comparison of a fully sampled magnitude frame (a), its undersampled by 8
zero-filled version (e), and reconstructions using k-t FOCUSS (b), DLMRI (c) and DLTG (d)
with their respective errors multiplied by 6 (f, g, h).

A visual comparison of the data set profile in figure 4.8 along the vertical dashed line of figure 4.4

can help explain this finding. The DLTG method slightly smooths the reconstruction along time

in regions of high motion as a result of the TG sparsity enforcement. A small improvement

can be appreciated in the static regions outside the ROI (see arrow), which is part of the

reason for the improvement in the global PSNR and MSSIM metrics. We could argue that

down to sampling ratios of 0.12, the DLMRI method is already able to recover a faithful

representation of the signal within the ROI and therefore imposing an extra sparsity penalty

does not improve results considerably. However, at high acceleration factors the improvement

in the reconstruction quality is evident inside and outside the ROI as is shown in figure 4.6.
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(a) (b) (c) (d) (e) (f) (g)

Figure 4.8: Temporal profile of line
shown in figure 4.4 in the fully sam-
pled data set (a), and reconstructions
from a 8 fold acceleration using k-t FO-
CUSS (b), DLMRI (d) and DLTG (f)
with their respective errors amplified
by 6 (c, e, g).

Extremely low sampling factors inevitably degrade results and are a di�cult regime in which

to carry out a CS based reconstruction, but they force the algorithm to rely heavily on the

sparsity model it assumes from the data and can help analyse its suitability. Figure 4.9 shows the

reconstruction comparison with an acceleration rate of 15, which is the lowest sampling factor

tested. Although fine details are lost with the three methods compared, the DLTG method

overall provides the most satisfactory reconstruction. The k-t FOCUSS solution contains a

lot of aliasing artefacts even though its optimal sparsity model was unrealistically optimised a

posteriori. The DLMRI method presents a more blocky reconstruction and distorts the natural

shape of the heart especially around the myocardium. The DLTG method also contains blocky

artefacts, but it noticeably eliminates aliasing and preserves the coarse structure of the original

frame.

Figure 4.10 compares the temporal profile of the reconstruction at an acceleration rate of

12. The k-t FOCUSS method is not able to capture the dynamism well, and this is a direct

consequence of the sparsity model it uses. Sparsity in k-t FOCUSS is imposed on the Fourier

transform of pixels along the temporal dimension. If the reconstruction relies heavily on a

reconstruction that is too sparse, it will only be able to capture very coarse movement, but

fine temporal details will be missed as they are disregarded by the sparse model (see arrow A).

The DLMRI result is able to better recover fine temporal changes, but contains a considerable
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 4.9: Visual comparison of a fully sampled magnitude frame (a), its undersampled by 15
zero-filled version (e), and reconstructions using k-t FOCUSS (b), DLMRI (c) and DLTG (d)
with their respective errors multiplied by 6 (f, g, h).

amount of alias that is unresolved (see arrow B). Using the additional TG penalty removes the

aliasing at the expense of slightly smoothing the reconstruction along time, as shows the DLTG

result. Despite this, it is structurally the most faithful reconstruction out of the comparison.

To conclude the analysis, we show in figure 4.11 the original phase and the reconstructed

versions of a temporal frame from a data set accelerated by 8. Except in locations where the

amplitude is very low and hence phase is unstable (masked out in the fully sampled case),

the three reconstructions are accurate. Quantitatively evaluating phase reconstruction only

is di�cult because of the many random values when magnitude is zero, but this is implicitly

accounted for in figure 4.6.
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(a) (b) (c) (d) (e) (f) (g)

Figure 4.10: Temporal profile of line
shown in figure 4.4 in the fully sam-
pled data set (a), and reconstructions
from a 12 fold acceleration using k-t
FOCUSS (b), DLMRI (d) and DLTG
(f) with their respective errors ampli-
fied by 6 (c, e, g).

(a) (b) (c) (d)

Figure 4.11: Phase reconstruction comparison in a scan accelerated by 8 of the fully sampled
data (a) and the reconstructions provided by k-t FOCUSS, DLMRI and DLTG (b, c, d).

4.5.3 Reconstruction with noise

This section analyses the impact of acquisition noise in reconstruction performance. The ac-

quired undersampled data can be described as x̂u = M(Fxf+n) where n is complex AWG noise

of power �2. The value of the noise regularisation parameter � = q/� in the data consistency

step of the DLMRI and DLTG algorithms now plays an important role.

In figure 4.12a we plot the dependence of the reconstruction quality on parameter q at a

sampling factor 0.25. The di↵erent input noise values displayed are represented as PSNRf , which

corresponds to the PSNR of the inverse DFT reconstruction of fully sampled data corrupted

by noise. In terms of absolute noise power, PSNRf = {25.8, 31.8, 35.8, 41.8} dB is equivalent to
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�2 = {4⇥ 10�8, 10�8, 4⇥ 10�9, 10�9}. The constant q, defining the consistency with respect to

acquired data (see equation (4.18)), was set to 5⇥10�6 and 5⇥10�5 for the DLTG and DLMRI

algorithms respectively based on these results. The same empirical value was found for q in

other tests independent of the patch and data set sizes. For high noise values (PSNRf  31.8

dB) a fine tuning of this constant is desirable as the reconstruction depends heavily on it, but

for lower noise values results are not very sensitive to it.

We plot in figure 4.12b the reconstruction performance as a function of PSNRf for a scan

accelerated by a factor of 4. The same rank order between the three methods is preserved

in this test, and both methods using DL present a milder decay of performance at high noise

values than k-t FOCUSS. The main reason for this improved robustness can be attributed to

the denoising capabilities that have been demonstrated by the K-SVD algorithm. Sparse coding

with a trained overcomplete dictionary and averaging overlapping patches is a powerful method

to denoise natural images [49]. The visual comparison for PSNRf = 25.8 dB in figure 4.13 shows

how the k-t FOCUSS reconstruction is much more contaminated by noise than the dictionary

based reconstructions.
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Figure 4.12: Algorithm evaluation with added noise. Reconstruction sensitivity to noise power
and parameter q for a scan accelerated by 4 (left) using the DLTG (solid) and DLMRI (dashed)
algorithms, and their robustness to input noise (right).
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 4.13: Visual comparison of the reconstructions from a scan accelerated by 4 that has
been contaminated by complex noise with input PSNRf = 25.8 dB (a) using k-t FOCUSS (b),
DLMRI (e) and DLTG (d) with their respective errors multiplied by 6 (f, g, h). The noise
added to the fully sampled data set is shown in (e) amplified by 6.

4.5.4 Spatial dictionaries

The main objective of this work is to analyse the potential of using spatio-temporal dictionaries

for dynamic data instead of independently reconstructing temporal frames with a 2D (spatial)

dictionary. In dynamic cardiac imaging, the temporal dimension is known to be highly redun-

dant as changes through time are slow and confined to specific regions of the image. Hence, a

sparsity model that specifically exploits this temporal redundancy can be expected to perform

better than one that disregards it.

Figure 4.14 visually compares the reconstruction of a 6 fold accelerated data set using the

DLMRI algorithm with a spatio-temporal and a spatial dictionary. The reconstruction using a

spatio-temporal dictionary shows much better dealiasing properties whereas the reconstruction

using the spatial dictionary has unresolved aliasing and shows an important loss of structure.

The PSNR metric was 38 dB and 27.5 dB for the spatio-temporal and spatial dictionary recon-
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struction respectively. The temporal profiles also demonstrate a more accurate reconstruction

with the spatio-temporal dictionary. Particularly, the spatial dictionary reconstruction shows

a blocky structure that is less consistent across time in terms of both structure and contrast,

which is a consequence of reconstructing temporal frames independently.

(a) (b)

(c) (d)

Figure 4.14: Comparison of 2D spatial and 3D spatio-temporal reconstruction. Shown are a
fully sampled frame (a), its undersampled by 6 zero-filled version (b), and the spatial only (c)
and spatio-temporal (d) reconstructions. All figures are shown with their respective temporal
profiles on the right hand side.

4.5.5 Real and complex-valued dictionaries

The use of real-valued dictionaries is a main di↵erence with respect to previous work on dictio-

nary learning for MRI. In [117, 147], a complex-valued dictionary is trained which is then used

to sparsely code complex-valued data. The DLTG algorithm instead trains a real-valued dic-

tionary to sparsely code real and imaginary parts of the data independently. Although training



4.5. Experiments and results 87

a real-valued dictionary is not expected to outperform a complex-valued dictionary, it is worth

understanding the di↵erences between these two strategies.

We look at the error that is produced on a fully sampled data set when these two di↵erent

sparsity models are used to approximate it. In figure 4.15, we compare the average error per

patch when a scan is coded using a maximum of s atoms from di↵erent dictionaries. It is di�cult

to portray a balanced comparison as the l0 norm is di↵erent for a complex and a real-valued

dictionary. The complex-valued dictionary allows for complex-valued sparse representations,

meaning that the coding of a patch can use s atoms from the dictionary and their phase can

be rotated. This allows for 2s degrees of freedom in the sparse representation. On the other

hand, the coding using a real-valued dictionary uses s atoms for the real part of a patch and

another independent s atoms for the imaginary part, hence matching the 2s degrees of freedom

of the complex-valued dictionary strategy.

Notice that, out of the dictionaries of K = 300 atoms, using a real-valued dictionary entails a

slightly smaller average error. This could be explained by the fact that the real-valued dictionary

allows the independent representation of real and imaginary parts of a patch, whereas the

complex-valued one reconstructs them jointly. Combinatorially, the representation capabilities

are higher for the real-valued dictionary, meaning that this strategy could be more flexible. Its

performance can only be matched by the complex-valued strategy if the overcompleteness of

the dictionary is increased. The example using K = 600 supports this explanation by showing

a smaller di↵erence in both methods using a larger complex-valued dictionary. This di↵erence

is nevertheless very small and does not seem to impact the reconstruction process noticeably.

4.5.6 Parameter selection

The choice of algorithmic parameters is crucial for a suitable operation of the DLTG algorithm.

The plots in figure 4.16 show the influence of the dictionary and patch size in the reconstruction

performance of a scan accelerated by 6. In figure 4.16a the patch size was kept at Np = 4⇥4⇥4
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Figure 4.15: Average error per patch pro-
duced by the assumption of s sparsity on a
fully sampled scan using di↵erent dictionar-
ies.

and in figure 4.16b the dictionary size was fixed at K = 600. The quality of the reconstruction

is comparable in the broad range of values tested except for very large patch sizes. These tend

to oversmooth the result missing out on fine details, which deteriorates the performance. It is

also noticeable that above a certain dictionary overcompleteness, there is little improvement in

using larger dictionaries.

N
0 200 400 600 800

P
S

N
R

 (
d

B
)

37.6

37.65

37.7

37.75

37.8

37.85

37.9

37.95

38

38.05

(a)

n1/3
3 4 5 6 7

P
S

N
R

 (
d

B
)

37.4

37.5

37.6

37.7

37.8

37.9

38

38.1

(b)

Figure 4.16: Influence of dictionary size (a) and patch size (b) on the reconstruction of a scan
accelerated by 6.
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4.5.7 Algorithm convergence, speed and acceleration

The intermediate convergence of terms in the global statement is summarised in figure 4.17 for

an example reconstruction of a 6 fold accelerated scan. Although the convergence of the DLTG

algorithm is still to be proven, all the tests undergone showed convergence to a stable result.

(a) (b)

Figure 4.17: MSE convergence of approximate results xD and xTG relative to the ground truth
(a), and the intermediate sparsity level of the real, imaginary and training patches coding (b).

The convergence rate, algorithm speed and reconstruction performance is largely dominated

by the data consistency parameter ✏. A large ✏ entails small similarity with training and

coding patches, which can be achieved with very few atoms of the dictionary using a very

sparse representation. This means that few OMP iterations are needed both for training and

coding and the computational load is small. However, the quality of a reconstruction with this

parameter can be expected to be low as it will not be closely matched to the target data set.

On the other hand, a small ✏ requires a larger number of dictionary atoms to represent each

training and coding patch, which slows down each OMP routine. Nonetheless, this is necessary

to tightly adhere the reconstruction to the model and the observed data set, which is what will

ensure near optimal reconstruction.

This behaviour is illustrated in figure 4.18a, where the reconstruction performance of a 6 fold

accelerated data set is evaluated in terms of PSNR and convergence rate for di↵erent values
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of ✏. Figure 4.18b shows the time needed for one coding step of the entire data set (both real

and imaginary parts), which is the most demanding step in the algorithm. Matlab R2011b was

used for this assessment of the runtime on an Intel Core i7-2600 CPU at 3.4 GHz and 8 GiB of

memory. The C++ implementation of K-SVD provided by Ron Rubinstein in [113] was used

for the Batch-OMP stages.

Figure 4.18 allows for an empirical assessment of the global runtime of the entire reconstruction.

For instance, most of the results shown in this work were obtained with ✏ = 0.007, which

translates into a coding stage of 200 s, and the reconstruction in figure 4.18a took about 120

iterations to converge. The bulk of the computation therefore required 200 ⇥ 120/3600 = 6.6

h. Notice that there is nevertheless a lot of flexibility in the speed of the algorithm, as using

✏ = 0.01 would reduce this time to 110⇥ 75/3600 = 2.3 h without much compromising the end

result.

(a) (b)

Figure 4.18: Example of a reconstruction’s dependence to ✏ (a) and the Batch-OMP runtime
for one coding of real and imaginary parts of a scan (b).

There is a large di↵erence between these runtimes and the average 15 seconds required for

a k-t FOCUSS reconstruction but there is scope for much improvement. Runtimes for our

experiments were obtained with a sequential coding of individual time frames to save on memory

requirements, but the coding can be performed on the full data set relaxing memory restrictions.

Also, a very appealing modification is to process the 2N sparse coding steps necessary in each
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iteration of the algorithm in parallel, given that they are completely independent from each

other. Additionally, from the behaviour observed in figure 4.18a, it seems natural to seek

optimal trajectories for the data fidelity term ✏ such that it starts as a large value benefiting

from fast initial convergence, and is dynamically decreased as the algorithm converges to a

stable solution to reach high reconstruction quality. These are very simple additions that can

reduce the total runtime considerably. Decreasing patch sizes, their overlap stride and the

number of dictionary atoms also accelerates the algorithm although this can compromise the

end result.

These extensions have been tested on the same 6 fold experiment that was used to produce

results in figure 4.18a. We run OMP on a full data set at once and parallelise coding among 8

CPU cores. Moreover, we choose ✏(r+1) = ✏(r)/! to be dynamically updated at each iteration

r, setting ✏(0) = 0.01 and ! = 1.2 empirically, and we also reduce the number of dictionary

atoms to K = 169. These settings allow to obtain a result with equivalent PSNR as the best

performing example in figure 4.18a in only 6 minutes. Each OMP coding stage takes about 10

seconds and is still the most expensive operation. Further parallelisation of this step could be

achieved with GPU processing.

The use of temporal gradient sparsity in DLTG also has an important impact on the convergence

rate compared to the DLMRI version. Figure 4.19 shows the convergence of a 10 fold accelerated

scan in terms of DLMRI iterations and DLTG outer iterations. Two settings are compared for

each algorithm, a slow one using ✏ = 0.007 and ⌘ = 4 ⇥ 10�4, which are the values used

for all the results shown above, and a faster but less performant one using ✏ = 0.07 with

⌘ = 0.004. The enforcement of temporal gradient sparsity in DLTG accelerates the process

considerably. The reason for this is that the TG transform is able to reduce aliasing from a

global perspective in a way that is infeasible using only the patch-based approach of the DLMRI

algorithm. More specifically, the high temporal gradient complexity that independent masks

produce in consecutive frames is highly penalised by this auxiliary sparsity term.
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Figure 4.19: Convergence rate of DLMRI and
DLTG for two di↵erent data fitting terms se-
tups.

4.5.8 Influence of training data

The algorithm’s behaviour depends on the data chosen for dictionary training. The previous

results were computed with online learning of a dictionary using patches from the target scan.

Figure 4.20 shows an example of 20 atoms of the spatio-temporal dictionary trained in the last

iteration of the DLTG reconstruction in figure 4.7. These look very di↵erent from the initial

structured DCT dictionary. Some show coarse edges in di↵erent directions (atoms 5, 15, 17)

whereas others do not have a significant structure and are necessary to capture image details

(4, 12, 14). Furthermore, some contain temporal dynamism (1, 3, 10), with changes across

temporal instances t = 1, ..., 4, while others are relatively static through time (5, 17, 18).

The strategy for dictionary training can also have an impact on the acceleration of the algorithm.

Training can be performed o✏ine taking advantage of the large amounts of available high

quality medical data. This could be thought of as counterproductive since the aim is to tailor

the dictionary to the data set being reconstructed, and not to a prior scan that could come

from a di↵erent patient. However, the K-SVD method generally learns coarse features of the

data, so if di↵erent training data sets are used which are similar to the target data set in a

patch scale, they should provide a similar learning performance.

Table 4.2 shows the PSNR quality of reconstructions at accelerations 4, 6 and 8 using di↵erent

training data sets with ✏ = 0.01. The comparison looks at the initial DCT dictionary without
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Figure 4.20: Examples of patches learnt in
the last iteration of the 8 fold accelerated
DLTG reconstruction shown in figure 4.7.

training, the dictionary trained online on the target scan, a dictionary trained o✏ine on the fully

sampled target scan, and an o✏ine training on a fully sampled scan from a di↵erent subject.

As expected, the initial DCT dictionary always provides the worst reconstruction quality and

the best one is given by the fully sampled training data on the target scan. Notice however

that training data coming from a di↵erent cardiac scan can be used to train a dictionary o✏ine

and closely approximate the performance of training on the true data.

Table 4.2: Training data influence on PSNR (dB) with ✏ = 0.01.

Training data R = 4 R = 6 R = 8

DCT (no training) 38.86 36.78 35.22
True (online) 39.20 37.09 35.66
True (o✏ine) 39.20 37.12 35.66

Di↵erent - 1 scan (o✏ine) 39.20 37.09 35.65

Table 4.3 presents the same comparison using ✏ = 0.007. In this regime, the dictionary is

forced to very accurately represent the training data, so the tailoring to a particular scan

during training is accentuated. O✏ine training on a di↵erent scan performs slightly worse than

using the target scan, but still better than the initial DCT dictionary.
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Table 4.3: Training data influence on PSNR (dB) with ✏ = 0.007.

Training data R = 4 R = 6 R = 8

DCT (no training) 39.8 37.3 36.2
True (online) 40.1 38.0 36.7
True (o✏ine) 40.1 37.8 36.7

Di↵erent - 1 scan (o✏ine) 39.9 37.6 36.5

It is important to note that, although dictionary training enhances the reconstruction quality,

this increase is relatively small and sometimes might not be noticeable visually. These results

are in accordance with the comparisons shown in K-SVD denoising [49, 111], where dictionary

training rarely improves PSNR by more than 0.5 dB. The additional computation necessary for

training o✏ine, and most importantly online, should be taken into account and questioned as

being necessary or not depending on whether the improvement it can bring is clinically relevant.

To conclude, we show in table 4.4 the influence of the initial dictionary when reconstructing with

online training. The test compares a DCT initial dictionary, with one that is initialised with

random patches from the data and another that is filled in with independent and identically dis-

tributed (IID) Gaussian samples. The DCT initial dictionary provides the best reconstruction

whereas the random IID Gaussian initialisation performs noticeably worse. This is probably

because, although the DCT dictionary is not tailored to a scan, it is still able to provide a sparse

representation of it in the first iteration of each dictionary training step, facilitating the task

of the K-SVD algorithm. The IID Gaussian initialisation will most probably not find a sparse

representation of the training data, and this deteriorates the behaviour of K-SVD learning.

Table 4.4: Influence of dictionary initialisation on PSNR (dB).

DCT Data IID Gaussian

38.0 37.6 36.2

4.6 Conclusion

We have presented a novel algorithm for the acceleration of dynamic MRI acquisition based

on a sparsity model that can learn redundancy in the data and an auxiliary constraint on
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TG sparsity that helps speed up convergence and provides better results at high acceleration

rates. The method was tested on data from 10 subjects and provided superior performance in

every case compared to the fixed basis transform CS MRI method k-t FOCUSS. There were

no failures and no gross errors. The reconstruction of complex-valued MR data was performed

by splitting real and imaginary parts of the sequences and coding them with a real-valued

dictionary. The method proposed is shown to largely outperform the k-t FOCUSS algorithm,

which supports a conclusion that patch-based reconstruction and adaptive sparsity bases have

greater potential than fixed basis global sparsity transforms.

The use of spatio-temporal dictionaries has proven to have a major advantage with respect to

spatial dictionaries in reconstructing cardiac cine data. Imposing sparsity constraints on spatio-

temporal patches has two beneficial properties. First, the temporal dimension is expected to

be highly redundant in this kind of information, so if it is included in the sparsity model we can

expect to create a better scenario for a compressed sensing reconstruction. Secondly, coding

spatio-temporal patches implicitly enforces structural and intensity homogeneity across time,

which can correct much of the aliasing that spatial dictionaries cannot handle.

Another important finding presented is the influence that the training has upon the reconstruc-

tion. It has been shown how dictionary training enhances the reconstruction with respect to an

initial DCT dictionary, but this increase in quality is limited. This is the same conclusion that

could be drawn from the original K-SVD results on denoising [49, 111]. Considering the com-

putational overhead that online dictionary training entails, it could be regarded as unnecessary

if the reconstruction improvements are barely noticeable to the human eye. Nevertheless, we

have also seen how o✏ine training on a data set from a di↵erent patient could provide almost

the same results as online training, and this is a viable option that would benefit from the in-

crease in reconstruction quality while keeping the computation cost for training separate from

the online runtime.



Chapter 5

Parallel MRI reconstruction with

dictionaries

This chapter is based on the following publication:

• J. Caballero, A. N. Price, D. Rueckert, J. V. Hajnal, Patch-based dictionaries for parallel

MRI reconstruction, Proceedings of the 22nd International Society for Magnetic Res-

onance in Medicine (ISMRM) Annual Meeting and Exhibition, p. 1560, Milan, Italy,

10-16 May 2014.

5.1 Introduction

Modern sampling techniques exploiting sparse properties of images have demonstrated poten-

tial in accelerating MRI acquisition. However, the speed constraints of this imaging modality

have been tackled through other means, many of which are older than the ideas introduced by

CS. Perfect recovery from incomplete data is theoretically only possible if the data to be re-

constructed is redundant. Image sparsity implies an implicit data redundancy, but redundancy

96
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can also be explicitly generated by sampling the same data multiple times, and this is the idea

underlying parallel MRI.

Parallel MRI uses multiple coils that acquire the same data through di↵erent sensitivity pat-

terns. In this respect, the burden of data collection is distributed among multiple coils, and

produces an overcomplete set of linear equations that represent an oversampling of the image.

The solution to this set of equations, which is the magnetisation image of interest, reduces to

either a matrix inversion in image space [112] or a deconvolution in k-space [59]. Theoretically,

the achievable acceleration rate can be as high as the number of parallel coils, but in practice

it is bounded by coil geometry to typically 3 or 4 fold acceleration. Sensitivity patterns cannot

be made perfectly orthogonal to each other, resulting in a rank deficient sampling process that

when inverted causes numerical instability.

One possibility to deal with the instability of the parallel imaging process is to regularise the

solution, discarding solutions of unlikely characteristics. A common choice is LS regularisation,

also known as Tikhonov regularisation. This imposes a penalty on solutions of high energy, or

on ones which deviate too much from a reference solution such as a low resolution acquisition

scan of the image, which can be acquired fast [80]. This strategy can e↵ectively control the

noise amplification caused at high undersampling rates, but risks smoothing the reconstruction

and loosing detail.

With the introduction of CS reconstruction techniques, and previously with the analysis of

sparse signals, newer and more versatile regularisation techniques have been proposed for par-

allel MRI regularisation. Sparsity promoting norms such as l0 or l1 norms can be incorporated

into the parallel acquisition framework and can contribute to the reduction of noise and alias-

ing in the reconstruction as long as sampling incoherence constraints are ensured. The SPIRiT

method [85] poses the parallel recombination as an energy minimisation of the reconstructed

k-space, and is particularly well suited to incorporate regularisation penalty terms. A variation

called l1-SPIRiT can impose sparsity on the parallel reconstruction. The most investigated

sparsity domains for MRI images are the image domain for angiography [84], wavelets and
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TV for spatial data [84, 65, 31, 4], and the temporal Fourier transform for cardiac cine data

[84, 70, 55] amongst others.

These transforms are all complete, and though they can be very e↵ective and e�cient to use

at low acceleration rates, they may fail to provide su�cient sparsity at high accelerations.

Moreover, they provide non-adaptive sparsity models, and when relying too much on them

for the representation of missing data they can introduce unnatural looking artefacts. In the

previous chapter we have seen how an overcomplete transforms could overcome some of these

limitations, with added flexibility in sparsely representing images, and can additionally become

adaptive to image features through a DL process [134, 49], better conditioning the CS problem

and more faithfully reconstructing image features.

In this chapter we present an algorithm to combine DL and parallel imaging and analyse its

performance against CS parallel MRI counterpart techniques that use non-adaptive transforms

for sparse representations. Results are analysed with retrospective undersampling of phantom

and raw cardiac cine data, and validated on prospectively undersampled raw cardiac data.

The method proposed is based on SPIRiT, given that its formulation easily allows to impose

constraints on the reconstruction, and the modification of the l1-SPIRiT framework allows

direct comparison with complete and non-adaptive based CS constraints.

5.2 Compressed sensing parallel MRI

Using multiple transceiver coils for the acquisition of MRI data is an e↵ective method of reducing

scan time. Each coil collects the same data at the same time but filtered by di↵erent sensitivity

patterns. This e↵ectively allows to induce redundancy through hardware in the sampling

process, which is a necessary foundation for the recovery of undersampled data.

Assuming the full k-space of a 2D image of interest to be the signal x 2 CN , N = Nx ⇥ Ny,

its parallel coil c image is xc = Scx, where Sc is a sensitivity pattern that is distinctive of coil
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c and is point-wise normalised by C =

✓qPNc

c=1 S
H
c Sc

◆�1
such that SH

c Sc = IN . The k-space

acquisition of coil c can be described as x̂c = FScx, where F is a 2D discrete Fourier transform,

and the undersampled, noisy acquisition of x̂c can be represented as x̂u,c = Mx̂c + n, where n

is AWG noise, complex and circular, with M 2 RM⇥N a binary matrix with entries [M]n,n = 1

if k-space sample n has been acquired. If we let M̃ and F̃ be the block diagonal concatenations

of Nc replicas of M and F respectively, and ˜̂x, x̃ and S̃ the vertical concatenations of x̂c, xc

and Sc, 8c 2 {1, 2, ..., Nc}, the complete parallel acquisition can be compactly described as

˜̂xu = M̃F̃S̃x+ ñ = M̃˜̂x+ ñ, (5.1)

where ñ 2 CMNc is now noise received in all parallel coils. Noise will be assumed independent

for each coil, although in practice noise correlation among channels exists.

Di↵erent methods have been proposed for the reconstruction of x given ˜̂xu, which can be

categorised as image based or k-space based methods depending on the domain in which re-

construction is performed. SENSE [112] is an established image based parallel reconstruction

technique that poses the problem as the unfolding of information in ˜̂xu given a prior knowledge

of the sensitivity patterns S̃ by a simple matrix pseudo-inverse. Although this method is simple

and e�cient, one drawback is that it requires prior estimation of coil sensitivities, but numerous

techniques exist that can reliably estimate sensitivities.

The image space unfolding of SENSE can equivalently be performed in k-space by methods

like GRAPPA [59]. Using the convolution property of the Fourier transform, the matrix in-

version operation can be turned into a kernel deconvolution in k-space, where k-space samples

are synthesised by a linear combination of their neighbouring samples. Given that coil sensi-

tivities can be approximated as low-frequency bias fields, small k-space deconvolution kernels

are su�cient for an accurate estimation of missing k-space samples. In a first stage, k-space

convolution weights are calculated which relate a neighbourhood of acquired sampled and an

additional auto-calibrating k-space line. These weights express the local relationships among
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k-space samples, so they can be used to recover unknown samples. Furthermore and contrary

to SENSE, GRAPPA does not require the explicit estimation of sensitivity patterns given that

this information is implicit in the deconvolution weights used for reconstruction. The original

GRAPPA method is however restricted to regular sampling patterns. There have been multiple

attempts to combine the benefits of parallel MRI with CS, some examples extending SENSE

and GRAPPA can be found in [76, 108, 149, 30].

5.2.1 SPIRiT

SPIRiT [85] is a reconstruction technique that generalises the GRAPPA methodology. It poses

the reconstruction as the solution to the minimisation of a functional, where consistency with

acquired k-space samples is weighted by the synthetisation of k-space samples on the full solu-

tion x̂, which includes both acquired and non-acquired samples. This can be formally expressed

as

min
˜̂x
k˜̂xu � M̃˜̂xk22 + �2k (G� I) ˜̂xk22, (5.2)

with I the identity matrix. The matrix G is a linear operator containing weights of the convo-

lution kernel which synthesise k-space samples from a local region of neighbour samples, and

it can be computed prior to reconstruction from a small portion of fully sampled k-space. The

k-space interpolation mechanism of SPIRiT recovers every coil image separately, which can

then be recombined using a sum of squares (SoS) of all images.

As long as the acceleration rate R = N
M

satisfies R  Nc, perfect reconstruction of image x can

in theory be achieved. However, in practice the acceleration rate is limited by numerical insta-

bilities that occur when R approaches the theoretical maximum Nc, with a significant reduction

in SNR. This phenomenon is demonstrated in figure 5.1, where the 8 coil reconstruction of a

phantom with very little AWG noise is degraded as the acceleration rate increases.



5.2. Compressed sensing parallel MRI 101

(a) R = 3 (b) R = 4 (c) R = 5 (d) R = 6

Figure 5.1: SPIRiT parallel reconstruction of a phantom image simulating 8 coils. Acceleration
rates R > 4 present a much lower SNR than for R  4.

(a) R = 3 (b) R = 4 (c) R = 5 (d) R = 6

Figure 5.2: l1-SPIRiT parallel reconstruction of a phantom image simulating 8 coils. The
regularisation with a sparsity term can reduce noise amplification stemming from parallel re-
combination instability.

5.2.2 l1-SPIRiT

The formulation of the SPIRiT reconstruction as an optimisation task makes the addition of a

constraint or penalty term to reduce the solution set straightforward. Regularisation terms that

have demonstrated great potential when combined with parallel MRI are sparsity promoting

norms kS(x)kp, where p = 0 or p = 1 and S(x) is a sparsity transform. Building upon the

description of SPIRiT, CS can be used to formulate an l1-SPIRiT reconstruction [85]:

min
˜̂x
k˜̂xu � M̃˜̂xk22 + �2k (G� I) ˜̂xk22 s.t. kS(F̃H ˜̂x)k1  s. (5.3)
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In figure 5.2 we show the same reconstructions as in figure 5.1 using l1-SPIRiT, where the

sparsity promoting transform is a Daubechies 4 wavelet transform.

How much an acquisition can be accelerated and perfectly recovered through CS is dependent

on the sparsity degree of S(F̃H ˜̂x) and the incoherence between the sampling and the sparsity

domains. The incoherence criterion can be generally satisfied in MRI with a random selection

of k-space samples and the sparsity transform used will normally depend on the object being

imaged. The sparsity degree available from complete and fixed transforms however can result

to be too restrictive compared to overcomplete and adaptive transforms. Patch-based sparsity

has been successfully used for the reconstruction of undersampled MRI data in the previous

chapter, but only in a single coil, synthetic setup.

5.3 D-SPIRiT: Parallel MRI with dictionaries

In this section we present an extension of the SPIRiT method that forces the reconstruction to

be sparsely represented by an overcomplete, and additionally adaptive, patch-based dictionary.

Let the magnetisation image of interest x of N pixels be decomposed into N overlapping patches

of size
p
Np⇥

p
Np assuming they wrap around image boundaries. UsingRn, 8n 2 {1, 2, ..., N},

to denote a linear operator extracting patch n from x, then patches can be represented sparsely

using �n as Rnx ⇡ D�n, where D 2 CNp⇥K is an overcomplete dictionary of K atoms (Np <

K). If � denotes the matrix where column n is �n, the sparse coding of image x by a dictionary

D can therefore be cast as

min
�
kRnx�D�nk22 s.t. k�nk0  s, 8n. (5.4)

The patch-based dictionary can optionally be defined as an optimisation variable to become

adaptive to the reconstructed data through a DL process such as K-SVD.

We propose to impose the dictionary sparsity condition only on the recombined image, which
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contains the object of interest, instead of forcing all coil images to satisfy sparsity criteria as

suggested in l1-SPIRiT. There are two important reasons for this choice. First, the coding of

images with a smooth intensity variation such as coil images is generally less sparse than that of

an image with relatively homogeneous intensity like a recombined image. Also, the enforcement

of sparsity on patches is computationally intensive and a typical coil number can be as high as

32, so sparse coding these many images would considerably increase computational e↵orts.

5.3.1 Problem formulation

The general problem, referred to as D-SPIRiT, can be described as the parallel coil solution ˜̂x

to

min
˜̂x,�
k˜̂xu � M̃˜̂xk22 + �2k (G� I) ˜̂xk22 +

�2

Np

NX

n=1

kRnx�D�nk22 s.t. k�nk0  s, 8n, (5.5)

where the variable D can be included as another optimisation variable if we want to adapt

the dictionary online. For computational reasons however we will not explore this option and

will only use dictionaries that are either non-adaptive or have been adapted o✏ine prior to

reconstruction.

Solving this problem directly poses a number of di�culties. Firstly, the l0 norm in the con-

straint makes this problem non-convex and discards convex minimisation techniques. However,

it can either be relaxed to an l1 norm and solved with linear programming tools or solved

approximately with greedy algorithms such as OMP [135]. A second problem is the fact that

the first two penalty terms are defined in global k-space of all coil images whereas the third

is defined in overlapping patches of the recombined image domain. A complex optimisation

task with such asymmetric penalties is likely to contain many local minima that are di�cult

to avoid when solving directly. Motivated by these two major obstacles, we opt to split the

problem into simpler subtasks and alternate their solutions. This splitting has already been

proposed for similar problems imposing l1 sparsity on parallel MR data [64].
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5.3.2 Solution with variable splitting and penalty method

We introduce the variable x0, and without loss of generality we write

min
˜̂x,�,˜̂x0

k˜̂xu � M̃˜̂xk22 + �2k (G� I) ˜̂xk22 +
�2

Np

NX

n=1

kRnx
0 �D�nk22 s.t.

8
><

>:

k�nk0  s, 8n

˜̂x0 = ˜̂x
, (5.6)

where now the sparse coding is imposed on the auxiliary image x0 = S̃HF̃H ˜̂x0. The recon-

struction with respect to ˜̂x and ˜̂x0 is now split, and we can relax the additional constraint to

obtain

min
˜̂x,�,˜̂x0

k˜̂xu � M̃˜̂xk22 + �2k (G� I) ˜̂xk22 +
�2

Np

NX

n=1

kRnx
0 �D�nk22 + µ2k˜̂x0 � ˜̂xk22

s.t. k�nk0  s, 8n. (5.7)

The variable ˜̂x0 can be treated as an intermediate solution that is forced to be sparsely rep-

resented by D, and its contribution to the result of ˜̂x is controlled with parameter µ. This is

the fundamental concept behind the penalty method [128]. An alternated solution of problem

(5.7) with respect to ˜̂x and ˜̂x0 would be equivalent to (5.5) as µ!1. It is however observed

empirically that a convergent solution can be found for µ fixed. With this splitting, we can

now solve the problem alternating the optimisation variables.

Conjugate gradient SPIRiT

Begin by assuming � and ˜̂x0 to be fixed, the solution with respect to ˜̂x is given by

min
˜̂x
k˜̂xu � M̃˜̂xk22 + �2k (G� I) ˜̂xk22 + µ2k˜̂x0 � ˜̂xk22, (5.8)

which is simply a SPIRiT reconstruction regularised by the prior solution ˜̂x0, and can be solved

fast using conjugate gradient (CG) descent [85].
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Orthogonal matching pursuit sparse coding

For ˜̂x and ˜̂x0 fixed, the problem with respect to the sparse coding matrix � becomes

min
�
kRnx

0 �D�nk22 s.t. k�nk0  s, 8n, (5.9)

where the summation can be ignored because the coding of all patches is independent. Assuming

the linear operatorRn wraps around the boundaries of the image, this problem can be e�ciently

solved as N separate OMP steps, and is a highly parallelisable task.

Least squares sparse prior update

To conclude, the solution of ˜̂x0 for a given ˜̂x and � is given by the solution to

min
˜̂x0

NX

n=1

kRnx
0 �D�nk22 +

µ2Np

�2
k˜̂x0 � ˜̂xk22, (5.10)

which is a LS problem with closed-form solution. To solve this problem we use an estimation

of the sensitivity patterns S̃ and consider equivalently

min
x̂0

NX

n=1

kRnS̃
HF̃H ˜̂x0 �D�nk22 +

µ2Np

�2
k˜̂x0 � ˜̂xk22. (5.11)

Denoting the functional to be minimised as f , it is a real-valued function of complex variables,

for which the optimum solution for ˜̂x0 is given by @f

@ ˜̂x0H = 0. Expanding equation (5.11), we

have

min
˜̂x0

NX

n=1

⇣
RnS̃

HF̃H ˜̂x0 �D�n

⌘H ⇣
RnS̃

HF̃H ˜̂x0 �D�n

⌘
+

µ2Np

�2

⇣
˜̂x0 � ˜̂x

⌘H ⇣
˜̂x0 � ˜̂x

⌘
, (5.12)
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and therefore, to satisfy @f
@x̂0H = 0 it is required that

 
F̃S̃

NX

i=1

RT
nRnS̃

HF̃H +
µ2Np

�2

!
˜̂x0 = F̃S̃

NX

n=1

RT
nD�n +

µ2Np

�2
˜̂x. (5.13)

A number of observations can simplify the expression in (5.13). Assuming the wrap-around

property of the patch extractorRn, the first term reduces to NpF̃S̃S̃
HF̃H . Moreover, the matrix

PN
n=1 R

T
nD�n is simply the added contribution of all coded patches relocated to their corre-

sponding position within the dataset. Using the notation ˜̂xD = 1
Np

F̃S̃
PN

n=1 R
T
nD�n to refer to

the parallel k-space of the solution obtained when averaging the overlapping contributions of

approximated patches D�n, 8n, dividing both sides by Np gives

✓
F̃S̃S̃HF̃H +

µ2

�2

◆
˜̂x0 = F̃S̃˜̂xD +

µ2

�2
˜̂x. (5.14)

This last expression can be solved via CG.

5.3.3 Implementation considerations

The three subproblems are iteratively alternated updating their respective optimisation vari-

ables, with the initialisation ˜̂x = 0, � = 0 and ˜̂x0 = SPIRiT(˜̂xu), where we use SPIRiT(˜̂xu)

to denote the SPIRiT solution given undersampled data ˜̂xu. To speed up the convergence of

the CG steps, we use the zero-filled parallel k-space M̃T ˜̂xu as initial solution in the first iter-

ation and updated ˜̂x values in subsequent iterations. Convergence is assumed whenever the

normalised consecutive change k
˜̂x(i�1)�˜̂x(i)k22
k˜̂x(i)k22

is smaller than 10�4, with superscript (i) denoting

intermediate results at iteration i. For the estimation of the sensitivities needed we use the

SVD method in [137] prior to reconstruction, although others could apply.

The tuning of three variables �, � and µ in equation (5.7), which ideally has to provide optimal

results and solution convergence, is problematic because it opens a large space for tuning
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exploration. One way to reduce the number of tuning parameters is to let � ! 1 and force

the variable ˜̂x0 = ˜̂x instead of the weighted solution suggested by equation (5.14). With this

modification, the variable ˜̂x0 is treated as an intermediate solution that is close to ˜̂x, but which

introduces the sparsity condition as a prior in the CG update of step 2. The final algorithm

is compactly presented in algorithm 3. Empirical convergence is then easily observed, and the

setting of remaining parameters � and µ can be defined from an estimation of noise power

as will be seen in section 5.4.5. Only results using this simplified algorithm, referred to as

D-SPIRiT, will be presented and discussed.

Algorithm 3: D-SPIRiT

Input: Undersampled k-space - ˜̂xu

Output: Reconstructed k-space - ˜̂x
Initialise: ˜̂x(0) = M̃T ˜̂xu,�(0) = 0,

˜̂x0(0) = SPIRiT(˜̂xu), estimate S̃.
repeat

1. i i + 1
2. Update output k-space using CG with initial guess ˜̂x(i�1):

˜̂x(i)  min
˜̂
x

k˜̂xu � M̃˜̂xk22 + �

2k (G� I) ˜̂xk22 + µ

2k˜̂x0(i�1) � ˜̂xk22

3. Update sparse coding with OMP:

�(i)  min
�

kRnx0 �D�nk22 s.t. k�nk0  s, 8n

4. Recombine sparse coil images k-spaces: ˜̂xD = F̃S̃ 1
Np

PN
n=1 RT

nD�n

5. Update sparse prior: ˜̂x0(i)  ˜̂xD

until
k˜̂
x

(i�1)�˜̂
x

(i)k2
2

k˜̂
x

(i)k2
2

 10�4;

5.4 Experiments and results

The objective of the following experiments is to provide an analysis of the proposed algorithm’s

performance, both quantitatively and qualitatively, and to study the advantages and drawbacks

of using overcomplete and adaptive dictionaries for MRI reconstruction with respect to other

sparsity transforms.
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5.4.1 Experimental setup

We present result for both retrospective and prospective undersampling experiments. Results

in sections 5.4.2 and 5.4.3 use retrospective undersampled data from a fully sampled simulated

or real scan. The performance of reconstruction provided by the method presented is analysed

at di↵erent sampling rates and under di↵erent SNR conditions, and is compared with the

baseline SPIRiT algorithm and the regularised l1-SPIRiT. In section 5.4.3 we also present

results obtained while taking part in a reconstruction challenge relative to numerous undisclosed

competing methods.

All undersampling masks used assume Cartesian k-space sampling. Di↵erent masks are used for

each experiment, and benefits and drawbacks of each configuration are discussed. In figure 5.3

we provide as a reference an example of di↵erent 2D+t mask designs that will be used in the

experiments below. For 2D phantom experiments, referring to one of these designs is equivalent

to using a single 2D frame from one of the spatio-temporal masks shown. Undersampling in

both phase and frequency encode directions can provide ideal sampling incoherence conditions,

although acceleration is only e↵ective when undersampling is performed in the phase encode

direction.

In table 5.1 we compare distinctive characteristics of each mask design. We will see that, while

it is important to maximise spatio-temporal sampling incoherence to enable CS reconstruction,

k-space maximum sampling distance must also be taken into account. Given that SPIRiT

recombines parallel MR data as a k-space deconvolution using a small kernel, allowing large

gaps in k-space with no acquired data can be detrimental as the deconvolution process will

have no information other than noise to synthesise missing samples. Also note that although a

circularly shifted regular sampling is coherent in time, the periodic nature of the aliasing means

that within a spatio-temporal patch the aliasing can vary very quickly through time.

Some D-SPIRiT reconstructions will be compared against l1-SPIRiT. In order to have a direct

comparison of the performance obtained with an overcomplete and adaptive transform instead
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(a) (b) (c) (d)

(e) (f) (g)

Figure 5.3: Mask designs used for testing: 1D regular (a), 1D regular circularly shifted (b),
1D uniform Poisson (c), 1D uniform random (d), 2D variable density Poisson (e), 2D uniform
Poisson (f), and 2D variable density random (g).

of a complete and fixed transform, we rely on the D-SPIRiT algorithmic solution for the l1-

SPIRiT implementation. The only modifications between D-SPIRiT and l1-SPIRiT are steps

3 and 4 in algorithm 3, where instead of using OMP to obtain an image that is sparse in a

dictionary we enforce l1 sparsity solving

min
˜̂xl1

k˜̂x0 � ˜̂xl1k22 s.t. kS(˜̂xl1)k1  s (5.15)

This problem can be solved fast with unconstrained iterative shrinking methods such as [8].
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Table 5.1: Subsampling mask design properties.

Mask design
Incoherence

Temporal aliasing Sample distance
Space Time

Regular
Constant

Low Low
Constant

Minimal
Circularly shifted Periodic

Poisson disk
Uniform

Moderate High Random Constrained
Variable density

Random
Uniform

High High Random Unconstrained
Variable density

These methods require tuning for a weight on the sparse penalty, which was explored manually

in all phantom tests individually to always compare against the best case scenario. For cardiac

cine experiments, where fine tuning becomes time consuming, a unique value was set that was

found to deliver optimal or close to optimal results in all cases. The sparse domain used for

l1-SPIRiT is the 2D Daubechies 4 transform domain for 2D data and x-f space 2D+t data,

which is obtained with a Fourier transform along the temporal domain.

Some retrospective experiments include artificially added noise. Noise is assumed to be AWG,

complex and circular, and independent for each coil. The metric we will use to refer to noise

will be k-space SNR, which determines how much of the received signal power is attributed to

noise. Formally, for the acquired signal ˜̂xu = M̃˜̂x+ ñ, we define k-space SNR as

kSNR =
P(˜̂xu)

P(ñ)
=

PMNc
n=1 k˜̂xu,nk22PMNc
n=1 kñnk22

. (5.16)

This metric allows to compare result at a given noise level irrespective of the undersampling

rate.

The parameters for all D-SPIRiT reconstructions were kept constant, except for the tuning

parameters � and µ, which are set based on the input noise power as is explained in section 5.4.5.

Dictionaries of K = 196 atoms were used to code patches of size Np = 8 ⇥ 8 for images or

Np = 4 ⇥ 4 ⇥ 4 for spatio-temporal data. The sparsity index was kept constant at s = 10 for

dictionary-based reconstructions, and the SPIRiT k-space convolution kernel size was 5⇥ 5.

Phantom experiments use simulated coil sensitivity patterns. These were generated by defining
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coil centres to be distributed around the centre of the image, as shown in figure 5.4. A 2D

Gaussian function was then used to simulate the magnitude of sensitivities, with variances

adjusted in each dimension. At the centre of the coil the magnitude is 1 and far away it decays

but does not reach 0. The phase of the coils was obtained from a 2D linear pattern that was

rotated for each coil. The pattern was generated as shown in figure 5.4b, to traverse a full ⇡

rotation far away from the coil centre and a 2⇡ rotation close to the coil centre. The coil phase

is a cropped section of this image pattern.

(a) Magnitude (b) Phase

Figure 5.4: Simulated parallel
coil sensitivity patterns. We
assume the generation of 8
sensitivity patterns, where the
2D Gaussian function in (a)
changes its center for di↵er-
ent coils, and the phase im-
age in (b) is rotated. The
coil phase is a cropped sec-
tion of the phase image pat-
tern shown in (b).

5.4.2 Retrospective phantom tests

The first examination of the algorithm is performed with the Shepp-Logan phantom, which is

an example image that can be very sparsely represented in many domains. Although exploiting

redundancy in the temporal dimension is a great advantage of spatio-temporal dictionaries,

a direct comparison with a complete, fixed-basis transform such as wavelets in a 2D setup is

useful for the evaluation of the algorithm’s behaviour.

A total of 8 parallel coils are assumed for this experiment. Figure 5.5 shows the magnitude

ground truth image for one of those coil images simulated, alongside with the data after we

add acquisition noise. Noise power was calculated such that the received k-space SNR was 30

dB. The visual comparison of the reconstruction results will refer to this setup, where each coil
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image is undersampled using a 2D Poisson disk mask. Notice that with the chosen parameters,

a SoS recombination of coil images produces an image with barely any noticeable noise as shown

in figure 5.5d.

(a) Coil 1 image (b) Coil 1 noisy image (c) SoS image (d) SoS noisy image

Figure 5.5: Data used for phantom experiments. Using 8 coils, we show one coil example ground
truth (a), the image with added noise equivalent for a received k-space SNR of 30 dB (b), the
SoS recombination ground truth (c) and the same recombination from noisy coil images (d).

Figure 5.6 compares reconstruction results for SPIRiT, l1-SPIRiT, and D-SPIRiT with a DCT

and a trained dictionary (DCT-SPIRiT and DL-SPIRiT respectively). For the training of

the dictionary the ground truth image in figure 5.5c was used, hence simulating the scenario

where ideal training data is available. Although the acceleration rate is below the theoretical

maximum for perfect parallel reconstruction and the added noise is barely noticeable in the

acquisitions, the numerical instability caused by coil geometry amplifies the noise in the SPIRiT

reconstruction. A regularisation based on wavelets using l1-SPIRiT can reduce some of this

noise but presents some inaccuracies, particularly in high frequency regions. Using patch-

based dictionary sparsity, as in figure 5.6c, we can control noise amplification better and this

improvement should be attributed to the overcompleteness of the transform, which is much

more flexible than a complete wavelet decomposition. A small advantage in image quality is

gained by adapting the dictionary to this particular dataset through DL as shown in figure 5.6d.

In figure 5.7 we provide a quantitative evaluation of this comparison for a range of under-

sampling factors for 40 dB k-space SNR. The amplification of noise and unresolved aliasing
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(a) SPIRiT (b) l1-SPIRiT (c) DCT-SPIRiT (d) DL-SPIRiT

(e) SPIRiT error (f) l1-SPIRiT error (g) DCT-SPIRiT error (h) DL-SPIRiT error

Figure 5.6: Reconstruction of a 6 fold accelerated 8 coil simulation of a phantom image with 30
dB k-space SNR. The SPIRiT reconstruction (a) su↵ers from noise amplification, which can be
controlled by l1-SPIRiT regularisation (b), but especially by an overcomplete (c) and adaptive
(d) dictionary regularisation.

produces the decay of PSNR and MSSIM, but the rate of decay is milder for sparsity regu-

larised reconstructions, particularly for the patch-based dictionary methods shown. The ability

to preserve structural similarity at high accelerations by overcomplete sparsity transforms is

notable. In figure 5.8 we show the same comparison for an acceleration rate of 6 and di↵erent

k-space SNR values. In this comparison the decay of PSNR is similar for all methods, which

maintain a roughly constant performance relative to each other, although again patch-based

methods are able to preserve a high MSSIM metric even in very noisy regimes.
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Figure 5.7: Performance
evaluation of SPIRiT and its
sparsity regularised versions
for 40 dB k-space SNR
at di↵erent undersampling
ratios.

(a) PSNR (b) MSSIM

Figure 5.8: Performance
evaluation of SPIRiT and its
sparsity regularised versions
for 6 fold acceleration at
di↵erent k-space SNR.

(a) PSNR (b) MSSIM

5.4.3 Retrospective cardiac cine tests

In this section we present results with dynamic MR data. The undersampling is retrospective,

hence allowing quantitative evaluation of the reconstructions. Two di↵erent sources of data are

analysed, both acquired with a fully balanced steady-state free precession scan with breath-

holding. Simulated noise was not added given that these datasets already contain acquisition

noise.

Short-axis dataset tests

First, we present results on short-axis cardiac cine scans that were acquired using retrospective

gating with 32 channels. The datasets contain 30 temporal frames of a single slice of thickness

4 mm. In-plane resolution was 1.25 ⇥ 1.25 mm2 and the matrix size accounting for phase

encode zero-padding was 384 ⇥ 192, corresponding to a 640 ⇥ 320 mm2 FOV. For simulation

purposes however the datasets were retrospectively cropped in image space to a matrix size of
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200 ⇥ 189, getting rid of zero signal regions and allowing for faster reconstruction simulation.

The undersampling masks applied to this data are 1D circularly shifted regular and 1D Poisson

random undersampling.

In figures 5.9 and 5.10 we show one example of such reconstructions for acceleration rates of

6.25 and 7.69. In both cases, the noise amplification in the baseline SPIRiT reconstruction

due to coil geometry restrictions is clear. The l1-SPIRiT reconstruction, which exploits the x-f

domain for sparse regularisation of the result also contains a considerable amount of aliasing

and noise. This result can be modified according to how strongly the result is regularised, and

although increasing sparsity regularisation can reduce noise it also smooths the reconstruction

through time. This result is compared to the proposed DL-SPIRiT method, which uses a

patch-based dictionary that has been trained a priori on a dataset from another patient. The

reconstruction is cleaner than the l1-SPIRiT method and at the same time can achieve good

temporal resolution. The main drawback is the loss of some fine details, as shown in figure 5.10d,

which can likely be attributed to the bad quality of the initial SPIRiT reconstruction and the

lack of multiresolution in the patch-based dictionary.

(a) Fully-sampled (b) SPIRiT (c) l1-SPIRiT (d) DL-SPIRiT

Figure 5.9: Reconstruction from 6.25 fold 1D regular circularly shifted undersampling.

In table 5.2 we provide a quantitative evaluation of this comparison for reconstructions from

7 di↵erent patients. The dictionary used for the DL-SPIRiT reconstructions was always the

same, and was pre-trained on a single subject dataset. For all cases the patch-based method

was shown to outperform the l1 regularised method, and the order of improvement in PSNR
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(a) Fully-sampled (b) SPIRiT (c) l1-SPIRiT (d) DL-SPIRiT

Figure 5.10: Reconstruction from 7.69 fold 1D regular circularly shifted undersampling.

of about 2 dB is similar to the one observed in the single channel simulations of chapter 4.

Table 5.2: PSNR (dB) reconstruction performance mean ± standard deviation of retrospectively
undersampled 32 coil data from 7 patients.

Sampling factor SPIRiT l1-SPIRiT DL-SPIRiT

0.16 33.64 ± 1.88 36.02 ± 1.98 38.31 ± 2.01
0.13 32.14 ± 1.86 34.71 ± 1.97 36.09 ± 1.91

ISMRM challenge dataset tests

The second dataset is available as part of the 2013 ISMRM sub-Nyquist cardiac cine recon-

struction challenge [66]. This dataset contains 10 cases and is much more heterogeneous as it

combines short-axis and long-axis scans, with undersampling patterns that are variable den-

sity random, Poisson disk random, and circularly shifted regular. However, the ground-truth

fully-sampled data is not publicly available, so for evaluation we rely on visual inspection and

on scores relative to other undisclosed algorithms.

The ISMRM challenge dataset allows testing the algorithm on a wider variety of examples,

helping identify the strengths and weaknesses of the method. Specifications of each scan are

given in table 5.3, showing the scan axis (SA: short axis, LA: long-axis), the undersampling

rate and the mechanism used to generate the retrospective undersampling mask. A total

of 22 teams entered the challenge, for which they had to upload reconstructions for the 10
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undersampled cases. An automated system evaluated the performance of each reconstruction

using the formula 100⇥ (1�RE), where RE is reconstruction error relative to reference images

as measured by a weighted Besov norm [39].

Table 5.3: ISMRM challenge data specifications.

Case Scan axis Undersampling rate Mask type

1 LA 5 1D circularly shifted regular
2 LA 10 2D variable density random
3 LA 13 2D variable density Poisson disk
4 LA 6 1D circularly shifted regular
5 LA 5 1D uniform density random
6 SA 5 1D circularly shifted regular
7 SA 14 2D variable density Poisson disk
8 SA 5 1D uniform density random
9 SA 5 1D circularly shifted regular
10 SA 9 2D variable density random

Figure 5.11 shows the challenge results with our method highlighted as the black bottom row in

each case. We applied the DCT-SPIRiT method in order to avoid dictionary training runtime.

On average, the dictionary-based method was ranked 10th. One of the reasons for the modest

average ranking was that for some cases the performance was relatively poor. This decrease in

relative performance is particularly drastic for cases 5 and 8, which are the only examples for

which a 1D uniform random sampling was used. This choice of mask, although it is beneficial

from a CS perspective because it o↵ers low sampling coherence in space and time, it is detri-

mental for k-space deconvolution methods such as SPIRiT. This is because the deconvolution

kernel is smaller than some of the random gaps created in the acquisition, meaning that for

those regions of k-space the only information available for reconstruction will be noise. The

masks for these cases were provided as part of the data and are shown in figures 5.12c and 5.13c

and reconstructions are shown in figures 5.12d and 5.13d, exhibiting unresolved aliasing arte-

facts. This corruption was already strong in the SPIRiT initialisation of the reconstructions

due to inherent k-space deconvolution problems, and its regularisation is unable to resolve it.

Reconstructions are considerably better if a minimum distance between k-space samples is

imposed, using for instance regular or Poisson disk random masks. For those cases, such as 4

and 7, the performance of the dictionary-based method was very close to the top performer.
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These cases are shown in figures 5.12b and 5.13b. The SPIRiT reconstruction can provide a

good result because the mask designs in figures 5.13a and 5.13c are particularly well-suited for

parallel k-space deconvolution methods. However, it does introduce some noise and aliasing

which is then cleaned by the dictionary sparsity regularisation.

Figure 5.11: ISMRM cardiac cine reconstruction results. Coloured bars show reconstruction
performance of competing methods, which are undisclosed, and the proposed technique D-
SPIRiT is shown in black.
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(a) (b)

(c) (d)

Figure 5.12: Examples of long-axis reconstructions from the ISMRM challenge dataset. We
show the mask and DCT-SPIRiT reconstructions for cases 4 (a, b) and 5 (c, d).

(a) (b) (c) (d)

Figure 5.13: Examples of short-axis reconstructions from the ISMRM challenge dataset. We
show the mask and DCT-SPIRiT reconstructions for cases 7 (a, b) and 8 (c, d).
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5.4.4 Prospective cardiac tests

We now turn to the application of the method in a practical and realistic setup. Commercial

scanners do not readily allow random undersampling as is required for CS reconstruction, but we

present results using typical undersampling patterns for SENSE and k-t SENSE, which are re-

spectively regular static undersampling and regular circularly shifted undersampling. These ex-

periments underline the importance of incoherent undersampling for the reconstruction method

presented.

Regular undersampling

The data for these experiments was acquired in a 32 coil Philips Achieva scanner, using a bal-

anced turbo field echo sequence. A total of 30 frames of size 256 ⇥ 256 were produced with

resolution 1.25 ⇥ 1.25 mm2, resulting in a 320 ⇥ 320 mm2 FOV, and the slice thickness was 8

mm. A single patient was scanned at di↵erent undersampling rates with masks from the SENSE

acquisition method provided by the scanner. The SENSE undersampling protocol uses a reg-

ular 1D undersampling mask that is invariant through time, hence does not comply with the

incoherence requirements necessary for a CS reconstruction. This means that the reconstruc-

tions inevitably contain coherent aliasing, that is unresolvable through sparse regularisation,

but these experiments provide nevertheless an assessment of the powerful noise reduction en-

abled by the method proposed. Furthermore, SENSE undersampling does not provide a fully

sampled k-space region. We therefore learn the k-space deconvolution weights necessary for

SPIRiT and estimate coil sensitivities from a fully sampled region in the centre of k-space of

the fully sampled scan, hence simulating the undersampling mask in figure 5.3a.

A total of 12 short-axis slices were acquired as a stack scan for one patient, where raw data was

first fully acquired, and then prospectively undersampled at ratios 2 to 81. The acceleration

1Using standard scan parameters, a full slice could be reconstructed from a single heart beat with an
undersampling of 4 fold. For this reason the protocol was changed from the standard 67% to 100%, meaning
that the required 30 frames were reconstructed and not subdivided as is common practice. This resulted in a
real scan acceleration from undersampling and avoided temporal blurring that can come from phase percentages
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enabled by undersampling was translated by the number of slices that could be acquired per

breath-hold or by the e↵ective phase encode resolution. In table 5.4 we provide a short descrip-

tion of the acquisitions performed, where we see total acquisition time is e↵ectively reduced up

to a 6 fold acceleration, and the acceleration of the 8 fold case was used to improve the phase

encode resolution relative to the 6 fold case.

Table 5.4: Prospective data with regular static undersampling acceleration specifications.

Case Total scan time Slices / BH Scan time / BH Scan time reduction Scan percentage

x1 03:29.5 1 00:17.5 1 121%
x2 01:57.8 2 00:19.6 1.78 125%
x4 01:05.5 3 00:16.4 3.20 123%
x6 00:39.3 4 00:13.1 5.33 92%
x8 00:39.3 4 00:13.1 5.33 123%

We show one frame of this dataset in figure 5.14a. The SPIRiT and DCT-SPIRiT reconstruc-

tions are compared to the scanner’s baseline SENSE reconstruction in figures 5.17 and 5.18 for

the reconstruction of a single slice. Given that aliasing artefacts are coherent, DCT-SPIRiT

should not be expected to remove them. However, these results show how the patch-based

regularisation of SPIRiT can enhance its reconstruction quality by reducing noise amplifica-

tion. This is particularly noticeable in figure 5.18 for the 6 fold acceleration case, where the

SENSE and SPIRiT reconstructions (figures 5.18g and 5.18h) contain a considerable amount

of corruption that the DCT-SPIRiT method can alleviate (figure 5.18i). It can be expected,

based on retrospective undersampling tests, that the remaining aliasing is resolvable using a

circularly shifting or a Poisson sampling.

Regular circularly shifted undersampling

An additional test was run where data was acquired using the k-t SENSE protocol, which uses

a regular undersampling pattern that is circularly shifted through time. The data was again

acquired on a 32 coil Philips Achieva scanner, using a balanced, prospectively gated and breath-

holded acquisition. The acquisition is divided into two stages: an undersampled acquisition

lower than 100%.
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(a) (b)

Figure 5.14: Single frames from original fully-sampled datasets used in prospective undersam-
pled tests. We examine results using regular static undersampling on dataset (a) and regular
circularly shifted undersampling on dataset (b).

stage to collect regularly undersampled data across the entire k-space over multiple cardiac

cycles, and a training stage that collects 15 lines of fully-sampled central k-space data over

two cardiac cycles. The two stages are separately acquired during di↵erent cardiac cycles, but

are combined to make up an undersampling pattern similar to the one shown in figure 5.3b.

The undersampling only a↵ects the first stage, where data is allowed to be sparsely acquired,

and translates into less number of cardiac cycles needed to collect the required k-space data.

This datasets reconstruct 24 dynamic phases of the cardiac cycle. Details on the acquisitions

analysed are provided in table 5.5.

Table 5.5: Prospective data with regular circularly shifted undersampling acceleration specifi-
cations.

Case Total scan time Cardiac cycles Time / dyn. phase (s)

x1 00:20.3 20 + 2 0.845
x2 00:11.1 10 + 2 0.462
x4 00:06.4 5 + 2 0.226
x6 00:05.5 4 + 2 0.229
x8 00:04.6 3 + 2 0.192

The reconstructions are shown in figures 5.19 and 5.20, where in this case the dictionary was

pre-trained on a dataset from a di↵erent patient. The comparison is made against the k-t

SENSE reconstruction that is available directly from the scanner. In figure 5.19, we can see
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how the k-t SENSE reconstruction provides good visual appearance for all accelerations up to

case x8, whereas SPIRiT, shown in the middle column contains considerable noise and aliasing

for x6 and x8, as was similarly seen in previous simulations. The patch-based regularisation

is able to reduce the distortion caused by these corruption. An important di↵erence is better

appreciated in figure 5.20, where we also plot a temporal profile crossing the left ventricle. It

can be seen that, although k-t SENSE produces a good in-plane result, the temporal resolution

is dramatically a↵ected by high acceleration. K-t SENSE regularises the reconstruction with

an estimate of the x-f support from the training scan, but the acquired data is not enough to

faithfully reconstruct the dynamism of the scan. In contrast, the DL-SPIRiT method proposed

is able to much better reproduce the temporal pattern delineated by the ventricle even in the

x8 case. Although remaining aliasing is not as destructive as with regular static undersampling,

some of it is still unresolved, most likely because of the coherent undersampling strategy. Also,

fine details are again lost, but just as with previous examples the coarse structure of the data

and the dynamism is well preseved.

5.4.5 Parameter selection

The choice for � and µ was performed based on an estimation of the received k-space SNR. Given

that this is a measure that is independent of the undersampling ratio and data dimensions,

universal parameters could be chosen irrespective of the nature of the data. In figure 5.15 we

show SPIRiT performance against varying choices of � at three di↵erent k-space SNR values.

The datasets used are one cardiac cine scan (solid) and the 2D phantom (dashed). The optimal

tuning of � is roughly dependent exclusively on input noise, irrespective of the data and the

sampling ratio. A higher level of noise demands stronger regularisation of the data. Setting �

to the optimal choice based on these plots and running a similar test for µ results in another set

of optimal µ choices, again independent on test conditions. These plots can therefore be used

to generate look-up tables for � and µ that provide optimal choices based on noise estimation,

as shown in figure 5.16
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(a) k-space SNR = 10 dB (b) k-space SNR = 35 dB (c) k-space SNR = 60 dB

Figure 5.15: Exploration of tuning parameter � in the SPIRiT initialisation for the D-SPIRiT
algorithm. The tuning is dependent on the added k-space SNR, but not on the nature, dimen-
sion of the data, or undersampling rate, as shown using a cardiac (solid) and the Shepp-Logan
phantom (dashed).

(a) � look-up table (b) µ look-up table

Figure 5.16: Look-up tables for tuning parameters derived from manual explorations of di↵erent
noise levels.

Given that magnetisation signal is assumed to be very low at high frequencies, noise power was

estimated for each experiment as the signal variance of data from the highest 10% frequencies.

Knowing noise power and the total power received we could then derive k-space SNR. This

results in an accurate estimation at low SNR, when noise in high frequencies is overwhelmingly

larger than desired data, and less accurate at high SNR. However, in this latter regime optimal

tuning parameters converge as shown in figure 5.16. In practice, a noise preparation scan is

provided prior to imaging.
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5.4.6 Algorithm speed and acceleration

The most intensive modules of the algorithm are the update of sparse coding with OMP and

the update of the reconstruction in multi-coil k-spaces with CG. The former module is the same

as the one discussed in the previous chapter in a single coil setup, and therefore the same ideas

for acceleration presented in section 4.5.7 apply in this case. The update of the reconstruction

with CG is derived from the SPIRiT methodology. In the baseline SPIRiT reconstruction

proposed in [85], a single run of this descent algorithm is needed, but in our case it need to be

run iteratively to incorporate the sparse coding regularisation, and usually runs for about 50

iterations.

One main drawback of SPIRiT is that it looks for a solution in the multi-coil k-space domain,

and hence its solution space grows with the number of coils. Using Matlab on a 8 GiB machine

and 8 CPU cores, an 8 coil reconstruction of a 30 frame cardiac dataset can take about 5

minutes, but this algorithmic strategy lengthens reconstruction time by 6 times if the same

data is reconstructed from 32 coils.

There are nevertheless possibilities for reducing runtime and making it independent from the

number of coil channels used. One possibility would be to use a coil compression mechanism

[160]. Given that complete coil orthogonality is not achievable, we can maximise the utility of

the data acquired reducing the e↵ective acquisition space to 8 or fewer virtual channels. This

would reduce the solution space of SPIRiT and the algorithm could be used in the same way.

Alternatively, we could try to use dictionaries to regularise a coil recombination method working

in the space domain. The method ESPIRiT [137], for instance, has a strong relationship to

SPIRiT but defines the solution space to be a single image or a combination of a few images

in the space domain.
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5.5 Conclusion

In this chapter we have introduced a method combining overcomplete and adaptive patch-based

sparsity with parallel MRI reconstruction. The energy minimisation formulation of the SPIRiT

reconstruction framework allows the straightforward addition of a dictionary sparsity term.

We proposed a solution to the general problem formulation that splits it into three simpler

subproblems and iterates their solution until convergence.

We demonstrated in retrospective undersampling tests using a 2D phantom image and 2D+t

cardiac cine datasets that the algorithm proposed can outperform the baseline SPIRiT recon-

struction, which is corrupted by noise amplification at high undersampling, and a CS regularised

l1-SPIRiT method, which uses a sparsity transform that is less flexible than overcomplete dic-

tionaries. The method was validated in prospective undersampling cardiac cine tests, although

only coherent undersampling from the SENSE and k-t SENSE protocol were analysed. Using

regular static undersampling the method presented can enhance image quality compared to

SENSE and SPIRiT by controlling noise amplification, but is theoretically unable to resolve

coherent aliasing. When regular undersampling is circularly shifted, most of the aliasing cor-

ruption is attenuated but is again not fully resolvable, although the comparison against k-t

SENSE and SPIRiT shows that DL-SPIRiT can faithfully recover coarse structure and dy-

namism. It is expected that more incoherent sampling mask designs such as Poisson random

sampling could provide improved reconstructions in prospectively undersampled data, but this

remains as future work.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 5.17: Prospective undersampling reconstructions using regular mask. The comparison
is between SENSE (left column), SPIRiT (middle column) and DCT-SPIRiT (right column),
and acceleration factors are 2, 4, 6 and 8, from top to bottom rows.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 5.18: Zoomed ROI of prospective undersampling reconstructions using regular mask.
The comparison is between SENSE (left column), SPIRiT (middle column) and DCT-SPIRiT
(right column), and acceleration factors are 2, 4, 6 and 8, from top to bottom rows.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 5.19: Prospective undersampling reconstructions using circularly shifting regular mask.
The comparison is between k-t SENSE (left column), SPIRiT (middle column) and DL-SPIRiT
(right column), and acceleration factors are 2, 4, 6 and 8, from top to bottom rows.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 5.20: Zoomed ROI of prospective undersampling reconstructions using circularly shifting
regular mask. The comparison is between k-t SENSE (left column), SPIRiT (middle column)
and DL-SPIRiT (right column), and acceleration factors are 2, 4, 6 and 8, from top to bottom
rows.



Chapter 6

Application-driven MRI

This chapter is based on the following publication:

• J. Caballero, W. Bai, A. N. Price, D. Rueckert, J. V. Hajnal, Application-driven MRI:

Joint reconstruction and segmentation from undersampled MRI data, Proceedings of the

17th International Conference on Medical Imaging Computing and Computer Assisted

Interventions (MICCAI), vol. 1, pp. 106-113, Boston, MA, USA, 14-18 September 2014.

6.1 Introduction

The journey and utility of a medical image can take many forms. A common pipeline can

nonetheless be traced, where a patient or object is scanned, the data acquired is reconstructed

into an image, this image can optionally be analysed, for instance to look for quantitative

measures or to be registered and compared against another image, and the resulting information

is interpreted by a physician for diagnosis or di↵erential diagnosis. This traditional imaging

pipeline is illustrated in figure 6.1.

Although this paradigm for diagnosis informed by imaging is accepted as the current norm,

it can be improved at numerous fronts. An obvious limitation is error propagation, which is

131
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Acquisition!
from body to bits!

Reconstruction!
from bits to images!

Analysis!
from images to numbers!

Interpretation!
from numbers to knowledge!

Figure 6.1: Traditional imaging pipeline.

inevitable in serial data manipulation. The imaging problem is ill-posed per se, and requires

prior assumptions about the image carrying a degree of uncertainty about the aspect of the

reconstructed image. This uncertainty is further aggravated by a myriad of factors, such as

inherent systematic errors of the imaging method, image contrast limitations, or artefacts of

motion, aliasing or scattering. Usually, it is impossible to include a measure of this uncer-

tainty through stages hence leading to an accumulation of errors that is liable to contaminate

interpretation stages.

Another point for discussion is the e�ciency of the framework. Although the interpretation

of imaging information is a very complex process, it is clear that an enormous dimensionality

reduction exists when going from highly detailed images to clinical decisions based on a small

number of quantitative measures. This would not be problematic if the data needed to repro-

duce an image was acquired at no cost, but we have already seen how, especially in the case of

dynamic MRI, acquisition is a resource and time-consuming, expensive process.

This ine�ciency has already been noted in the past, as highlights the following extract from a

report on computational challenges of medical imaging from 2004 [130]:

The resulting images are now typically presented to experts (physicians) who use their

extensive experience and professional judgment to extract knowledge from the pictures.

Their interpretation is usually presented as a narrative qualitative appraisal, sometimes

even only comprising a single bit of information (yes/no). We note for future reference

that this analysis constitutes a very significant reduction in data volume, from a digital
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image to a few succinct bits of pertinent extracted information.

It is important to note that imaging is often exploratory, and the capability for high-quality

imaging of dense information is essential when the information required is unknown. However,

in many situations such as in follow-up scans, specific quantitative measures informing inter-

pretation are known to be of interest before data acquisition. There could therefore be scope

for scanning procedures dedicated for a particular application, perhaps faster and more e�cient

that the current paradigm; an application-driven design.

The task of imaging data interpretation directly from raw MRI data is not simple. Diagnosis

relies on countless factors ranging from the physicians expertise, to an analysis of physical

conditions of the patient, or a subjective assessment of the situation relative to a history

of medical records of the same or di↵erent patients. Automating diagnosis, although very

desirable for the future, is an ambitious and delicate task. Furthermore, the Fourier relationship

between acquisition and spatial domains in MRI being global, it is also non-trivial to design

scan trajectories that are optimal for specific measures. Instead of considering the redefinition

of the entire imaging process, we propose the integration of only reconstruction and analysis

for the specific case of image segmentation.

This chapter is organised as follows. In section 6.2 we discuss how joint reconstruction and

segmentation can be of interest in fast MRI scanning, and review similar problems already

addressed in past literature. In section 6.3.1 we introduce the theory behind Gaussian mixture

model (GMM) segmentation for images and apply it for undersampled MR data in section 6.4.

We show results in section 6.5 of joint reconstruction and segmentation of accelerated 2D brain

and cardiac cine MR data.



134 Chapter 6. Application-driven MRI

6.2 Joint reconstruction-segmentation

Image reconstruction and segmentation of MRI data have long been the subject of intense

research activity. Image segmentation is usually treated as a distinct image processing stage

rather than being integrated into the reconstruction stage even though its performance is fully

conditioned by the quality and appearance of the latter. Similarly, the segmentation of an image

often relies to some extent on identifying di↵erent intensity patterns, which is an information

that is valuable to better condition the reconstruction problem.

We consider the problem of segmentation of undersampled MRI data. CS theory has been

applied for fast MRI acquisition and reconstruction as discussed previously in this thesis. Even

though this has great advantages as accelerated scanning can leverage constraints on patients, it

devotes all resources into the approximation of an intensity valued image that does not explicitly

reveal segmented information. Moreover, this approximation is never perfect, meaning that

even if we carried out a segmentation of the non-linear reconstruction subsequently, adopting

the traditional workflow, it is likely that reconstruction errors will propagate and influence

segmentation. We investigate an alternative way of processing raw undersampled data, that

could provide a segmentation both directly and accurately.

Simultaneous reconstruction and segmentation from undersampled measurements has already

been studied in imaging methods where segmented data can easily be explained in a lower

dimensional space. Hyperspectral imaging [158, 159], for instance, evaluates the response of a

FOV across a spectrum of frequencies, hence requiring extensive sampling of the same image.

Regions belonging to the same label will share a same signature across the frequency domain,

and this generates a redundancy in the sampling process that can be exploited in a non-

linear joint reconstruction-segmentation framework from undersampled data. Similarly, some

tomographic images such as positron emission tomography images can be well approximated

as piece-wise constant regions that directly relate to a label [62, 139].

We propose a non-linear joint reconstruction-segmentation of undersampled MRI unsing a com-
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bination of a reconstructive and a discriminative term, which can trade intensity and segmen-

tation accuracy. The reconstructive term of the algorithm employs a patch-based dictionary

to impose sparsity on the reconstructed image. Simultaneously, the discriminative term pro-

motes a representation where pixel intensities draw their values based on their labelling out of

a few possible segmentation regions. For this we choose a GMM where pixel intensities can

be explained by a linear combination of a few Gaussian distributions, and provides a simple

segmentation mechanism where pixel labels are decided based on the probability that a pixel

intensity was produced by a specific Gaussian. Discriminative representations obtained through

methods di↵erent from a GMM could also apply within the general framework.

6.3 Mixture model segmentation

6.3.1 Gaussian mixture modelling

A GMM considers the data to be the realisation of an underlying probabilistic model that is a

linear combination of Gaussian distributions. A recurrent assumption in image segmentation is

that similar pixel intensities can be assumed to share the same label. This is often the case in

brain MRI where individual tissues share similar intensity values [140, 141], or in cardiac cine

where blood pool regions, often of most interest, reveal a characteristic high intensity relative

to other anatomical regions such as the myocardium [122, 83].

Given observations x = {x1, x2, ..., xN} to be pixel intensities, the assumption that each pixel

intensity is the realisation of a single component from a mixture of L components can be

formalised with the definition of a latent variable z 2 RN⇥L. This variable is an indicator

function relating one component from the mixture to data point xn, such that for zn = el data

point n is assigned label l, where el is 1 at entry l and 0 otherwise.

Let N (xn|µl, �l) be a Gaussian distribution defined over xn with mean µl and standard deviation
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�l, compactly ✓l = {µl, �l}, we have

p(xn|zn = el, ✓l) = N (xn|✓l), (6.1)

and

p(xn|✓) =
LX

l=1

p(zn = el)p(xn|zn = el, ✓l) =
LX

l=1

⇡lN (xn|✓l), (6.2)

where ⇡l = p(zn = el) are mixture component weights and ✓ = {✓l, ⇡l; l = 1, . . . , L} is the

complete set of model parameters. Notice that mixture weights are not dependent on location

n, but can optionally become spatially dependent as will be shown in section 6.4.5. Assuming

all pixels intensities to be generated independently, we have

p(x|✓) =
NY

n=1

p(xn|✓). (6.3)

The ML estimate of the model parameters ✓ is given by the marginal likelihood of the obser-

vation

argmax
✓

ln p(x|✓) = argmax
✓

ln

(
X

z

p(x, z|✓)
)
. (6.4)

To illustrate the problem take the toy example given in figure 6.2, where the histogram of

the synthetic image in figure 6.2a with intensities generated from Gaussian distributions is

well approximated by a GMM in figure 6.2b. If model parameters ✓ are given, the optimal

labelling of each pixel xn in the absence of other prior knowledge (e.g. smoothness), is given

by argmaxl ⇡lN (xn|✓l), shown in figure 6.2c. The task is therefore to simultaneously find

parameters ✓ from the observations and the hidden variable z providing the segmentation as a

by-product.
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Figure 6.2: Toy image segmentation with GMM. A L = 3 component mixture model (b) is fit
to the histogram of intensity image (a) producing segmentation (c).

6.3.2 EM for GMM fitting

The solution of equation (6.4) is complicated by the sum inside the logarithm, which prevents

a closed-form solution when setting derivatives to zero. If we were given the complete data

set {x, z} the maximisation of the complete data log-likelihood ln p(x, z|✓) would be straight-

forward, but only the incompete data set x is at hand. Notice however that we can evaluate

membership weights w ⌘ p(z|x,✓) given the observations and a current estimate of the param-

eters using Bayes’ rule. It is therefore possible to iteratively solve equation (6.4) by alternating

the update of the complete data expectation under the posterior distribution of the latent

variable, and the update of the resulting function maximisation.

This is formally known as the expectation-maximisation (EM) algorithm, iterating two steps:

• Expectation step: Compute the function

Q(✓|✓(i)) =
X

z

p(z|x,✓(i)) ln p(x, z|✓) = Ez|x,✓(i) ln p(x, z|✓) (6.5)
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• Maximisation step: Evaluate new parameters as

✓(i+1) = argmax
✓

Q(✓|✓(i)) (6.6)

The log-likelihood ln p(x|✓) is guaranteed to increase [152]. For the special case of GMMs,

membership weights based on estimation ✓(i) are given in the expectation step by

w
(i)
n,l ⌘ p(zn = el|xn,✓

(i)) =
p(zn = el)p(xn|zn = el, ✓

(i)
l )

PL
j=1 p(zn = ej)p(xn|zn = ej, ✓

(i)
j )

=
⇡lN (xn|✓(i)l )

PL
j=1 ⇡jN (xn|✓(i)j )

. (6.7)

Di↵erentiating equation (6.3) with respect to µl, ✓l, and ⇡l, 8l, and equating to zero provides

an update of the parameter set ✓(i+1) as the maximisation step. Given N
(i)
l =

PN
n=1 w

(i)
n,l, and

8l,

µ
(i+1)
l =

1

N
(i)
l

NX

n=1

w
(i)
n,lxn, (6.8)

�
(i+1)
l =

1

N
(i)
l

NX

n=1

w
(i)
n,l(xn � µl)

2, (6.9)

⇡
(i+1)
l =

N
(i)
l

N
. (6.10)

The algorithm is stopped when the rate of change of the log-likelihood falls below a predefined

threshold or when a maximum number of iterations is reached. The full algorithm for fitting

a GMM to a data set is given in algorithm 4, and figures 6.3 and 6.4 illustrate the algorithms

behaviour on a simulated brain scan. For conciseness, throughout the chapter we show seg-

mented images along with their corresponding intensity image histogram and the GMM that

was used to fit it and produce the segmentation.
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Algorithm 4: EM algorithm for GMM segmentation

Input: x 2 RN - Observation of pixel intensities
K - Number of mixture components
I - Stopping criterion based on a maximum number of iterations or a rate of change threshold
on the log-likelihood
[✓(0)] - Initial model [optional]

Output: ✓ - GMM model parameters
w(z) - Membership weights, carrying soft segmentation

Initialise: Use ✓(0) or initialise model at random: �

(0)
l = 0.5 8l, ⇡

(0)
l = 1/L 8l, µ(0)

l randomly chosen
from x
repeat

1. i i + 1
2. E-step: Update w(z)(i) with equation (6.7)
3. M-step: Update ✓(i) with equations (6.8) to (6.10)

until Condition I is met ;

Figure 6.3: Phantom brain MR image [95].

(a) Iteration 1 (b) Iteration 8

(c) Iteration 22 (d) Iteration 43

Figure 6.4: GMM estimation and segmenta-
tion with EM algorithm. At the top of each
image is shown the histogram of intensity val-
ues and the model fit, with axes probability
against image intensity.
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6.4 Joint reconstruction-segmentation of undersampled

MRI data

Suppose now that we are interested in segmenting data x, but that a CS acquisition protocol

was used to accelerate its scan time with random k-space undersampling collecting data xu =

MFx = Fux 2 CM , M < N . A reliable GMM segmentation of x would require an accurate

estimate of missing k-space data. CS reconstruction mechanisms such as the one presented

in previous chapters provide approximate estimates of missing data. However, note too that

having an accurate mixture model for the data, which decides labels purely based on intensity

levels, would be useful information for the recovery of non-acquired k-space samples.

This intuitive mechanism for the joint reconstruction and segmentation of undersampled data

is formalised in equation (6.11). This problem presents a non-linear reconstruction for an

undersampled acquisition where the solution x is forced to be consistent with the acquired data

xu (first term), accurately and sparsely represented by a patch-based dictionary D (second

term and constraint), and consistent with a GMM term that is to be jointly estimated:

min
�,✓,x

kFux� yk22 +
�

Np

NX

n=1

kRnx�D�nk22 � � ln p(x|✓) s.t. k�nk0  s, 8n. (6.11)

This is an non-convex problem. We choose to approximate its solution by alternating the update

of each optimisation variable �, ✓ and x independently. Although this alternating projection

approach is not guaranteed to converge, it decomposes the global problem into three subprob-

lems that are either convex or can be solved with a greedy method. Sections 6.4.1 to 6.4.3

describe derivations for the three updates necessary, and the full algorithm is summarised in

algorithm 5.
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6.4.1 Update of sparse model with OMP

For x and ✓ given, we require the update of the sparse model � as

min
�

NX

n=1

kRnx�D�nk22 s.t. k�nk0  s, 8n, (6.12)

which is a problem that has already been addressed by sparse coding algorithms such as OMP

[109].

Additionally, this step could define the variableD as an optimisation variable making the dictio-

nary adaptive. Given that the GMM modelling defines intermediate segmentations of the data,

an interesting extension would be to analyse the uses of intermediate labelled reconstructions

to train class specific dictionaries for di↵erent regions of the image. For instance, dictionaries

that are specifically trained from a given class, such as gray matter in brain MR tissue seg-

mentation or myocardium in cardiac cine images, should reconstruct those areas better than a

dictionary trained on data from all regions, because they have increased specificity. Similarly,

dictionaries could be learnt from interfaces of pairs of regions. Some results have shown that

such a classification of training data for independent dictionaries can improve reconstruction

[156].

6.4.2 Update of GMM with EM

Given an estimation of the reconstruction x and the sparse model �, the minimisation problem

in equation (6.11) reduces to

min
✓
� ln p(x|✓) = max

✓
ln p(x|✓), (6.13)

which is the problem of fitting a GMM to a data set seen in equation (6.4) and solved through

the EM algorithm.
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When no estimate is available in the first iteration, the model is randomly initialised and the

stopping criterion I corresponds to 100 EM iterations. Subsequent updates of the model reuse

the last estimation as initialisation and define a shorter stopping criterion of 30 iterations.

6.4.3 Update of reconstruction with CG

The last step is the update of the reconstruction x given an estimation of ✓ and �. Expanding

the third term of equation (6.11) we have

min
x
kFux� yk22 +

�

Np

NX

n=1

kRnx�D�nk22 � �
NX

n=1

ln

 
LX

l=1

⇡lp
2⇡�l

e
� (Pnx�µl)

2

2�2
l

!
(6.14)

using the notation xn = Pnx with Pn 2 R1⇥N a row vector acting as pixel extraction operator

to simplify analysis. Di↵erentiating with respect to x and equating to zero we find

2FH
u (Fux� xu) +

2�

Np

NX

n=1

RT
n (Rnx�D�n)

+ �
NX

n=1

LX

l=1

⇡lp
2⇡�l

e
� (Pnx�µl)

2

2�2
l

PL
j=1

⇡jp
2⇡�j

e
�

(Pnx�µj)
2

2�2
j

✓
PT

n (Pnx� µl)

�2
l

◆
= 0, (6.15)

and using the compact definition of Gaussian distributions

2FH
u (Fux� xu) +

2�

Np

NX

n=1

RT
n (Rnx�D�n)

+ �
NX

n=1

LX

l=1

⇡lN (xn|✓l)PL
j=1 ⇡jN (xn|✓j)

✓
PT

n (Pnx� µl)

�2
l

◆
= 0. (6.16)

Notice that the multiplicative term where x is non-linear is the same as the membership weights

defined in equation (6.7), which is an output of the GMM update step. We can therefore replace

this term by intermediate solutions of wn,l and look for a fixed-point solution of x. This results
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in

2FH
u (Fux� xu) +

2�

Np

NX

n=1

RT
n (Rnx�D�n) + �

NX

n=1

LX

l=1

wn,l

✓
PT

n (Pnx� µl)

�2
l

◆
= 0, (6.17)

and isolating x we find

 
FH

u Fu +
�

Np

NX

n=1

RT
nRn +

�

2

NX

n=1

LX

l=1

wn,l

�2
l

PT
nPn

!
x

= Fuxu + �
NX

n=1

RT
nD�n

Np

+
�

2

NX

n=1

LX

l=1

PT
n

wn,l

�2
l

µl. (6.18)

To better understand this expression, we take the Fourier transform on both sides and analyse

each term separately in equation (6.19) for the k-space update of x:

 
FFH

u FuF
H +

�

Np

F
NX

n=1

RT
nRnF

H +
�

2
F

NX

n=1

LX

l=1

wn,l

�2
l

PT
nPnF

H

!
Fx

= FFH
u xu + �F

NX

n=1

RT
nD�n

Np

+
�

2
F

NX

n=1

LX

l=1

PT
n

wn,l

�2
l

µl. (6.19)

The first term of the left-hand side reduces to an N ⇥N matrix with diagonal entry n set to 1

if k-space location n was acquired. The second term is the factor �
Np

multiplied by the identity

matrix scaled up by the dictionary atom size Np, and hence reduces to �I. Similarly on the

right-hand side, the first term is simply the zero-filled k-space acquisition and the second is

the Fourier transform of the solution found by averaging the contribution of patches sparsely

approximated with D. The third term on the left-hand side, contrary to the first and second, is

not a diagonal matrix. This prevents the update of x to be performed pixel-wise independently,

but the system of equations can nevertheless be easily solved with CG descent.

The third term on both sides is di�cult to interpret, but it becomes intuitive if we let � !1.
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Consider then the update given by

NX

n=1

LX

l=1

wn,l

�2
l

PT
nPnx =

NX

n=1

LX

l=1

PT
n

wn,l

�2
l

µl. (6.20)

where we have removed the left multiplication by F on both sides. Given that the pixel

extraction vector isolates the handling of individual pixels, the update of the reconstruction

(now in image domain) is independent for all pixels and is defined as

xn =

PL
l=1

wn,l

�2
l
µl

PL
l=1

wn,l

�2
l

. (6.21)

The third terms on both sides of equation (6.19) therefore promote a solution where pixel values

are determined as a weighted combination of GMM means. Individual contributions depend

on membership weights and Gaussian variances. In a typical scenario, membership weights for

most pixels are quickly attributed to only one Gaussian distribution j (i.e. wn,l ⇡ 1 for l = j,

and wn,l ⇡ 0 for l 6= j), making µj dominate the contribution to the update of pixel intensity

xn by the GMM term.

Algorithm 5: Reconstruction-segmentation for fast MRI

Input: xu 2 RM - Acquired k-space samples
M 2 RM⇥N - Undersampling mask
K - Number of mixture components
I - Maximum number of iterations

Output: x 2 RN - Reconstructed intensity image
w(z) - Membership weights, carrying soft segmentation

Initialise: x(0) = Fuxu, �(0) = 0, �

(0)
l = 0.5 8l, ⇡

(0)
l = 1/L 8l, µ(0)

l randomly chosen from x(0)

repeat
1. i i + 1
2. Update sparse coding �(i) with OMP using x(i�1) in equation (6.12)
3. Update model parameters ✓(i) with EM using x(i�1) in equation (6.13)
4. Update reconstruction x(i) with CG using �(i) and ✓(i) in equation (6.14)

until Condition I is met ;
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(a) Iteration 1 (b) Iteration 3 (c) Iteration 7 (d) Iteration 8

Figure 6.5: Joint reconstruction-segmentation trivial solution and EM instability. Each image
shows the intensity reconstruction (top), the intensity histogram and GMM model fit, where
axes are probability against intensity (middle), and the segmentation derived from the model
fit (bottom). There exists a trivial solution to the global problem posed for which �l = 0.
The figures show how the left-most Gaussian in the model collapses after iteration 8, and this
destabilises the joint reconstruction-segmentation as the model needs to readjust itself and
compensate for the missing cluster.

6.4.4 Avoiding EM trivial solution

An important consideration for the cost function in equation (6.11) is the fact that the dis-

criminative term ln p(x|✓), unlike the data consistency and the sparse model accuracy terms, is

unbounded. We are seeking a joint solution for x, � and ✓, but as the log-likelihood can grow

to infinity it will unavoidably preponderate over the first two terms in the minimisation of the

functional.

The EM algorithm is known to present singularities. Consider the case when a data point xn
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is exactly equal to the mean of mixture component l. This point will contribute a term to the

log-likelihood of the form

⇡lN (xn|zn = el, ✓l) =
⇡lp
2⇡�l

e
� (xn�µl)

2

2�2
l =

⇡lp
2⇡�l

, (6.22)

hence the trivial solution that will maximise it is �l = 0. This causes component l to collapse

upon data point xn and reveals that the problem is not well-posed. Possible solutions exist to

avoid this pathological behaviour consisting on heuristics, such as reinitialising the estimation

if a component collapses, or considering a variational approach.

The problem we present in equation (6.11) is bound to find this trivial solution, given that

we simultaneously look for x. In practice, for � > 0 pixel intensities are pulled towards the

means of the Gaussians they have been assigned, and eventually pixel intensities reach the

same value as the component mean triggering the singularity described. An example is given in

figure 6.5, where after only 8 iterations of a joint reconstruction-segmentation of undersampled

data from a brain phantom the GMM becomes unstable. One component from the initial L = 4

component model collapses with � = 0, hence reducing the model to only 3 components and

disrupting the solution.

To prevent this from happening we propose the use of a minimum standard deviation that can

be reached by Gaussians to constrain the valid search for parameters ✓. This is information that

can easily be learnt from past similar images, but other options are available adding additional

regularisers to equation (6.11) such as k� � �Refk22 using reference standard deviation values

�Ref .

6.4.5 GMM extensions

The formulation of the segmentation as a by-product of a GMM allows for di↵erent natural

extensions that have been studied in the past. We analyse the use of two additions: Markov

random field (MRF) and spatial probabilistic priors.
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Markov random field

The model presented suggests a pixel-wise segmentation independent of space. MRFs are a

regularisation technique allowing to incorporate spatial smoothness in the segmentation process,

by considering the probability of pixel classification based on the labelling of neighbouring

pixels. This is a simple way of incorporating prior knowledge about the labelling of the data

being segmented. For instance, in the segmentation of cardiac cine it is expected that the

blood pool regions are surrounded by myocardium tissue, or that cortical grey matter and

white matter share boundaries in brain MR segmentation.

Formally, the latent variable z is a random variable whose value now depends on a predefined

set of weights G setting the relationship between pairs of labels within a neighbourhood. The

neighbourhood of pixel or voxel n is defined as the six first-degree neighbours for 2D+t and

3D data sets Pn = {nn, ns, ne, nw, nt, nb}, corresponding to north, south, east, west, top and

bottom.

This formally modifies the calculation of the GMM parameters through the EM procedure. As

described in [141], we rely on an approximation from mean field theory [73, 157, 140], which

translates into the replacement of equation (6.7) by

w
(i)
n,l =

p(zn = el|w(i)
Pn
,G(i))N (xn|✓(i)l )

PL
l=1 p(zn = el|w(i)

Pn
,G(i))N (xn|✓(i)l )

. (6.23)

where the variable ⇡l = p(zn = el) has been replaced by the neighbour dependent

p(zn = el|w(i)
Pn
,G(i)) =

e�UMRF(el|w
(i)
Pn

,G(i))

PL
l=1 e

�UMRF(el|w
(i)
Pn

,G(i))
. (6.24)

The energy function used is defined as

UMRF(el|w(i)
Pn
,G(i)) = G(i)g(i)

n , (6.25)
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with gn 2 RL, 8n, a variable that accumulates class probabilities around the neighbourhood of

xn, where individual entries l = 1, 2, ..., L, are defined as
P

j2Pn
wj,l.

Probabilistic spatial prior

It is often possible and desirable to exploit spatially dependent label priors from probabilistic

atlases which constrain regions in the image where di↵erent classes are expected to belong.

The benefits of probabilistic priors in image segmentation have been shown to contribute to

intensity information to obtain a more robust and accurate segmentation through EM [141].

Priors can be derived from labelled atlases through registration and label propagation. In a

joint reconstruction-segmentation setup, even if intermediate reconstructions contain aliasing,

a coarse intensity reconstruction is often reliable enough for atlas registration.

The addition of probabilistic priors to the model regularised by a MRF further modifies the

location independent variable ⇡l, which instead of equation (6.24) becomes

p(zn = el|w(i)
Pn
,G(i)) =

⇡n,le
�UMRF(el|w

(i)
Pn

,G(i))

PL
l=1 ⇡n,le

�UMRF(el|w
(i)
Pn

,G(i))
. (6.26)

where the probabilistic prior is defined as ⇡n,l = p(zn = el).

6.5 Experiments and results

In all tests, a fully sampled MR data set x 2 RN corresponding to 2D, 3D or 2D+t data, is

retrospectively undersampled in k-space with a mask M 2 RM⇥N producing an undersampled

observation xu = MFx = Fux 2 RM . Note that the fully sampled acquisition simulates a

single coil scenario and only the absolute value of the complex MR image is considered for

k-space undersampling and reconstruction. Extending the algorithm to handle parallel k-space

data and complex-valued data would be necessary for practical application. These cases could
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be addressed with a CS regularisation of parallel reconstruction algorithms as proposed in the

previous chapter, and with the use of a complex-valued GMM.

All undersampling masks simulate 2D variable density undersampling with a Gaussian PDF

favouring the sampling of the center of k-space where most of the signal energy resides. The

center 11⇥ 11 square of k-space is always acquired. Modifying the variance of the 2D Gaussian

allows for di↵erent undersampling rates. Figure 6.6a shows an example of this PDF, for which

the mask in figure 6.6c with undersampling factor 5 is produced as the outcome of a point-wise

Bernoulli process. In 3D or 2D+t data sets independent masks are drawn for successive slices

or temporal frames.

 

 

0 0.25 0.5 0.75 1

(a)

−100

−50

0

50

100

0 1

k x

p(k
x
)

(b) (c)

Figure 6.6: Undersampling mask simulation. A 2D Gaussian PDF is generated (a) from which
a mask can be obtained as the result of a Bernoulli process (c). In (b) we show a single column
of the pdf in (a). The variance of the PDF be modified to obtain di↵erent undersampling rates.

We first present a detailed analysis of the baseline algorithm without MRFs and probabilistic

priors. A simulated 2D brain scan from [95] is used to provide a sense of how the algorithm

reacts to parameter �. This parameter is of great importance because it can balance the output

towards a purely reconstructive result or favour the search for the simpler modelling provided by

the GMM. Cardiac cine data sets are then used to evaluate the performance of the baseline joint

reconstruction-segmentation algorithm, whereas real 3D brain scans are used to demonstrate

the capabilities of the algorithm extensions.
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For all experiments a DCT dictionary with K = 200 atoms of size Np = 4⇥4⇥4 (or 8⇥8 for the

2D image test) is used to impose a sparsity of s = 8 on all patches of the data set. Throughout,

the choice � = 10�3 was made to ensure high k-space consistency between the reconstruction

and acquired samples. The joint reconstruction always undergoes 5 reconstructive iterations

where � = 0, before starting the estimation of GMM parameters. This is a pragmatic choice

as it was found that the high degree of undersampling aliasing in the first iterations of the

algorithm is detrimental and a cleaner initialisation is beneficial. Parameter � was set to 10�9

for cardiac experiments and 6⇥10�10 for brain data tests. The minimum standard deviation was

set to 0.025 for both cardiac and brain data examples. This value was obtained from di↵erent

fully sampled scans to be a representative minimum standard deviation achieved when a GMM

was fitted to the fully sampled data.

6.5.1 Impact of discriminative modelling on reconstruction

It is interesting to visually understand the repercussion of the discriminative GMM model

weighting on the intensity reconstruction. We use a simple simulation of a 2D brain MR

image from BrainWeb [95] for demonstration purposes. The k-space of the original image is

undersampled by 5 and then jointly reconstructed and segmented using with di↵erent weightings

�.

With � = 0, the algorithm is purely reconstructive and corresponds to a simple version of dictio-

nary CS reconstructions presented in [117], therefore no mixture model is jointly estimated. As

� is set to a positive value, a mixture model is automatically estimated as shown in figure 6.7b.

The minimum variance imposed on the model restricts the fitting of the histogram. Using a

higher weighting in figure 6.7c sharpens edges between regions which have been identified with

di↵erent labels. This is a direct consequence of forcing the reconstruction to be consistent with

the GMM, because as data values approach their attributed Gaussian means the term ln p(x|✓)

increases. Therefore pixels deviating from their Gaussian means are increasingly penalised for

higher �. For the highest weight shown in figure 6.7d, pixel intensities cluster even closer to
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(a) � = 0 (b) � = 5⇥ 10�10 (c) � = 5⇥ 10�9 (d) � = 5⇥ 10�8

Figure 6.7: Visual appearance of reconstruction with di↵erent values of �. Each image shows
the intensity histogram, where axes are probability against intensity (top), and the intensity
image reconstruction (bottom). A joint segmentation is obtained for � > 0. As � increases pixel
intensities are encouraged to cluster around Gaussian means, which forces a separation between
di↵erent clusters in the intensity histograms shown above. This has an edge enhancement e↵ect
that is visually apparent in the images with highest � values.

Gaussian means and accentuate this e↵ect. These changes in intensity appearance will lead to

di↵erent segmentation results, so the tuning parameter � opens a range of di↵erent reconstruc-

tion and segmentation pairs and is a flexible mechanism to weight reconstruction fidelity and

segmentation sharpness.

6.5.2 Left ventricle cardiac cine segmentation

We analyse the performance of the baseline algorithm in algorithm 5 for the specific problem of

left ventricle segmentation in cardiac cine data. Fully sampled short-axis data was generated

from 7 patients using an optimal combination of 32 channel data. All data sets contain 30

temporal frames of size 256⇥ 256 (i.e. N = 256⇥ 256⇥ 30) with a 320⇥ 320 mm2 field of view

and 10 mm slice thickness. Mean ± standard deviation of heart rate was 62± 10.2 bpm, giving

a temporal rate of 33 ± 5.5 ms for the 30 frames. The raw multi-coil data was reconstructed

using SENSE [112] with no k-space undersampling and retrospective gating. Coil sensitivity

maps were normalised to a body coil image to produce a single complex-valued image set that
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was used to form final magnitude images.

The number of components in the mixture model was limited to L = 3. A very low L ensures

that the blood pool regions that we are interested in are captured by a single component in

the mixture model as shown in figure 6.8 on fully sampled data. Choosing a higher L would

not prevent the algorithm from working but would complicate the assessment of left ventricle

segmentation performance.

(a) (b) (c)

Figure 6.8: Cardiac cine data (a) is segmented with a GMM of K = 3 components (b) resulting
in a segmentation (c) that uses a single component to label blood pool regions.

The experiments for cardiac cine segmentation analyse three scenarios. Consider the original

fully sampled acquisition of a data set. The intensity image reconstruction of this data is given

by a Fourier transform and this intensity data can later be segmented using the EM algorithm.

Assume now that the same k-space data is retrospectively undersampled. It can be handled in

a similar fashion as the traditional imaging work flow, by first reconstructing with the patch-

based CS method and then segmenting the result with EM. We will refer to this as the separate

method. The alternative is to jointly reconstruct and segment the data using algorithm 5,

which we will call the joint method.

The segmentations of the separate and joint methods can then be compared against the segmen-

tation from the fully sampled data. Notice that the comparison is not against a ground truth

manual segmentation, but rather tries to analyse which one of the separate or joint approaches
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is less a↵ected by undersampling compared to the fully sampled case.

Qualitative analysis

Figure 6.9 compares a fully sampled temporal frame with the reconstructions of the separate

and the joint methods with a 10 fold undersampling rate. A ROI around the heart is zoomed in.

Notice how the separate method in figure 6.9c is unable to perfectly recover details, smooths tex-

ture for instance inside blood pool regions and blurs edges between ventricles and myocardium.

The joint reconstruction result in figure 6.9c again shows enhanced edges between ventricles

and myocardium because they have been identified as belonging to di↵erent Gaussians in the

mixture model.

(a) fully sampled (b) Separate reconstruction (c) Joint reconstruction

Figure 6.9: Cardiac cine reconstruction of a fully sampled data set (a) accelerated by 10 and
reconstructed using the separate (b) and joint (c) methods.

Changes in the reconstruction a↵ect the segmentation of the data set. Figure 6.10 shows the

segmented contour of the left ventricle in the three cases compared on a temporal frame and

across a temporal profile for an undersampling rate of 24. The temporal profile corresponds to

the white horizontal line in figure 6.10a. The segmentation contours are overlaid onto the fully

sampled data and the fully sampled segmentation is shown in purple. Segmentations of the

undersampled data are only shown when they deviate from the fully sampled segmentation, and

are coded in red for the separate method, in blue for the joint method, and in white when both
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methods coincide. Exclusive errors from the separate approach are predominant compared to

the joint method in both the slide and profile.

In particular, figure 6.10b shows how the separate method classifies as left ventricle a connected

region that is identified as myocardium between two left ventricle regions in the fully sampled

segmentation. It is likely that this is a consequence of the blurred edges of the reconstruc-

tion produced by the separate method at high undersampling, but the sharpening of edges

reconstructed by the joint method is able to improve segmentation accuracy.

(a) Temporal slide

(b) Temporal profile

Figure 6.10: Left ventricle segmentation from data undersampled at rate 24 seen on a temporal
slide (a) and a temporal profile (b) corresponding to the horizontal line in (a). The segmentation
of the fully sampled data (purple) is displayed along with deviations corresponding to errors in
the segmentation of accelerated data that are exclusive to the separate method (red), the joint
method (blue), or are shared by both methods (white).
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ROI pixel misclassification

In order to quantitatively assess the improvement of the joint reconstruction-segmentation over

the separate approach we manually defined a ROI to tightly contain the left ventricle and

myocardium boundary in the original data sets. For the 7 di↵erent patients, fully sampled k-

spaces were undersampled at di↵erent acceleration rates and then reconstructed and segmented

using both the separate and joint methods. Segmentation accuracy was evaluated in both

cases with the percentage of misclassified pixels inside the ROI relative to the fully sampled

segmentation.

Figure 6.11 shows box plots of pixel misclassification rates. Each dot at a given acceleration rate

is the result from a di↵erent data set and the improvement in pixel misclassification of the joint

method compared to the separate is shown by lines linking data sets for both approaches. For

all data sets and all acceleration rates, it was shown that the segmentation of the joint approach

was more accurate than the separate inside the ROI defined. A paired t-test was conducted for

all the experiments in the plot analysing pixel misclassification di↵erence between the separate

and joint methods. The result was a mean misclassification improvement of µ = 1.99% and a

p-value 2.19⇥ 10�18, revealing that the improvement is statistically significant.

An interesting finding is illustrated in figure 6.12. We focus on a single data set and analyse

reconstruction and segmentation errors at di↵erent undersampling rates with both methods.

Reconstruction errors shown in figure 6.12a are evaluated as MSE, whereas segmentation errors

in figure 6.12b look again at pixel misclassification rates.

The joint method outperforms the separate method in both in reconstruction and in segmen-

tation accuracy. However, the change is very di↵erent as can be seen in figures 6.12c and 6.12d

where we show the percentage improvement in reconstruction and segmentation accuracy ob-

tained by the joint method. The reconstruction improvement is relatively small compared to

the segmentation, which can reach above 30%. This finding suggests that the modification in

modelling for reconstruction that is introduced by the mixture model might not necessarily
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Figure 6.11: Pixel misclassification rate for left ventricle segmentation of undersampled cardiac
cine data.

provide a much more accurate reconstruction in terms of MSE, but it does condition the data

in a way that its segmentation is less a↵ected by k-space undersampling.

(a) (b) (c) (d)

Figure 6.12: Reconstruction and segmentation errors (a, b) produced at di↵erent acceleration
rates by the joint (green) and separate (blue) approaches. The rate of improvement as a
percentage is less pronounced for the reconstruction (c) than for the segmentation (d).

6.5.3 Brain tissue segmentation

In the following experiments we investigate the applicability of the joint reconstruction segmen-

tation method proposed to full brain tissue segmentation. In particular, we are interested in

the segmentation of 5 tissues: cerebrospinal fluid (CSF), ventricles (Vent), cortical grey matter

(cGM), deep grey matter (dGM), and white matter (WM). For this purpose we define a GMM
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of L = 5 components. It is in practice challenging to obtain accurate tissue segmentation re-

lying only on intensity features. We therefore assess the benefits of incorporating MRFs and

spatial priors to the model.

The data used for these experiments are T2-weighted 3D brain scans from 10 patients. Spatial

priors are derived from the MNI atlas [95] by a�ne registering the intensity image to MNI

space. This registration is performed whenever an update of the GMM is required. For fully

sampled data or the separate method, only one registration is needed prior to the segmentation

stage, whereas in the joint method a registration is performed in every iteration after the update

of the reconstruction. The ground truth used for these experiments is a manual segmentation

available for each data set.

MRFs and spatial priors

To analyse changes induced by the introduction of spatial priors and MRFs we look at one data

set with no undersampling and run a simple EM segmentation. We compare the segmentation

given by the baseline EM algorithm (using only intensity information), the EM algorithm with

spatial priors added but no MRF (G = 0), and with spatial priors and with MRF regularisation.

The pairwise interactions defined between tissues for the MRF are rated as high (H = 0),

medium (M = 1) or low (L = 1.5), which respectively define to the probability that a tissue

has to appear next to another. The weight matrix is set as

G =

2

66666666664

H L L M M

L H L M M

L L H M H

M M M H H

M M H H H

3

77777777775

,

where columns and rows orderly relate to CSF, Vent, cGM, dGM and WM.
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Figure 6.13 visually compares the three cases to the manual segmentation in a single coronal

slice. The EM algorithm alone is insu�cient for this data to correctly identify di↵erent tissues.

The use of a�ne registered spatial priors provides a substantial improvement over the baseline

EM algorithm, as it constrains the possible spatial locations where di↵erent tissues are expected

to be found. Also, the additional use of MRF regularisation helps cleaning the segmentation by

removing unlikely configurations, such as those highlighted with arrows in figure 6.13c where

isolated Vent pixels in dGM are removed and cGM labelling is corrected.

(a) Manual (b) EM (c) EM+priors (d) EM+priors+MRF

Figure 6.13: Comparison of brain tissue segmentation using the EM algorithm. The baseline
EM method (b) is unable to provide an accurate result relative to a manual segmentation (a).
The introduction of spatial probabilistic priors allows for a more precise result (c) and the use
of MRF regularisation can additionally discard improbable configurations (d).

Table 6.1 displays Dice coe�cients for the three cases compared: baseline EM, EM+priors

and EM+priors+MRF. Similar e↵ects are visible when data is undersampled and the joint

reconstruction-segmentation method is used with these extensions. The Dice metric evaluates

the overlap of di↵erent regions, where a Dice metric of 1 means perfect segmentation corre-

spondence.

Table 6.1: Dice metrics for segmentation of a fully sampled data set.

Method CSF Vent cGM dGM WM

EM 0.1312 0.0040 0.8033 0.1245 0.8955
EM+priors 0.0183 0.8132 0.9177 0.8651 0.9383

EM+priors+MRF 0.0611 0.8532 0.9561 0.8921 0.9406
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Segmentation from undersampled brain scans

The data from the 5 patients was retrospectively undersampled in k-space with di↵erent rates

and reconstructed and segmented with spatial priors. Figure 6.14 compares tissue segmentations

in a single slide of one data set when data is undersampled by 8. Both cases are very similar

and in general fail in the same regions mainly because of the deterioration of the intensity

reconstruction caused by the aggressive undersampling. There are however detailed locations

where the joint method is able to better reproduce the true segmentation as shown in the arrows

of figure 6.14c.

(a) Manual segmentation (b) Separate segmentation (c) Joint segmentation

Figure 6.14: Brain tissue segmentation from data undersampled by 8. The joint method (c) is
able at some locations, such as those highlighted by arrows, to better approximate the manual
segmentation (a) than the separate approach (b).

In order to analyse global results on all cases, we consider segmentations for each data set

at di↵erent acceleration rates and compute average tissue Dice metrics (the Dice for CSF is

not taken into account for the averaging because of the poor quality in all examples). Results

are shown in figure 6.15, where again linked dots correspond to the same data set. The plot

reveals that the average Dice metric improves for almost all cases when using the joint method

instead of the separate. A paired t-test conducted on all experiments to analyse the average

Dice di↵erence between the joint and the separate method statistically confirms this hypothesis

with an average Dice improvement of µ = 5.6⇥ 10�3 with p-value 2.10⇥ 10�9.

We can also use a GMM segmentation on the fully sampled data set as ground truth to compare
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Figure 6.15: Average tissue segmentation Dice from undersampled data (excluding CSF).

against the resulting segmentations. This is the same test as presented in section 6.5.2 for

cardiac examples where no manual segmentation was available, and reveals how much the

segmentation in both methods is degraded by the undersampling. In this case, however, the

joint method provides a segmentation that deviates more from the fully sampled segmentation

than the separate method.

We speculate the cause for this, which contradicts what was found in section 6.5.2, is the

contribution of spatial priors to the update of the reconstruction. Probabilistic priors are

obtained from the registration and weighting of multiple manual segmentations performed by

experts. These segmentations are not only based on intensity information, but also on anatomy

and the experts’s past experience. As a result, drawing intensity information from the labelling

to inform the update of the reconstruction is likely to produce errors, given that pixels that are

labelled based on a strong prior will be confidently pulled towards the class mean even though

their true intensity value is not necessarily close to it.
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6.5.4 Algorithm speed and acceleration

The core of the algorithm was implemented in Matlab, with the exception of the OMP sparse

coding steps [119] and the a�ne registrations [131] which were performed in C++. As a

reference for algorithm runtime, on a configuration Intel Core i72600 CPU at 3.4 GHz and 8 GiB

of memory, and for a data set of size N and the parameters used throughout the experiments,

the average runtime per joint reconstruction-segmentation iteration was N ⇥ 3⇥ 10�5 seconds.

Therefore, the cardiac cine experiments took roughly 2562 ⇥ 30 (dimension) ⇥35 (iterations)

⇥3⇥ 10�5 ⇡ 35 minutes to converge. Brain tissue segmentation experiments used larger data

sets and approximately took 2563 (dimension) ⇥35 (iterations) ⇥3⇥ 10�5 ⇡ 5 hours.

The bottleneck of the computation is on the patch-based sparse coding stage with OMP. More

information about the complexity of this coding can be found in [20]. It was shown in chap-

ter 4 how this step could be accelerated with a parallel coding of independent patches without

a↵ecting the results presented, or by changing some parameters such as reducing the number

of dictionary atoms K or the sparsity index of the coding s. Alternatively, the replacement of

patch-based coding by a faster global sparsity transform such as proposed by other CS methods

could also be investigated.

6.6 Discussion

The experiments presented try to answer a very specific question. Given that we have at

hand accelerated MR data similar as the one delivered by a CS acquisition protocol, what

is the best use that we can make of it provided we would like to obtain the best possible

segmentation? Results suggest that a joint reconstruction-segmentation can directly provide

segmented data, but also that the quality of this segmentation can outperform a traditional

workflow of information, where an intensity image is first independently reconstructed and then

a segmentation algorithm is used for classification.
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The joint reconstruction-segmentation algorithm presented is able to balance through a single

parameter reconstruction and segmentation accuracy. In doing so it produces segmentation

results for undersampled data that are closer to those obtained on the image without under-

sampling than using the separate approach. Moreover, the formulation as an energy functional

allows for very simple modifications as additional weighting terms, and relying on the EM seg-

mentation framework enables the simple use of spatial priors and MRFs as shown in figure 6.13.

To conclude, experiments on brain tissue segmentation demonstrate that the segmentations ob-

tained with such extensions on undersampled data can be accurate with respect to a manually

labelled reference.

The approach presented to join reconstruction and analysis achieves accurate segmentations

for very fast acquired acquisitions while addressing potential issues in the imaging pipeline. A

joint reconstruction-analysis is shielded against error propagation through stages, which could

be the cause of the decreased performance in the separate approach. Similarly, it proposes a

more e�cient handling of information. Segmentation algorithms usually expect high detailed

reconstructed images that are time consuming and expensive to produce in MRI. However,

a segmentation is a much more concise and simple representation of the data in terms of

information. With the introduction of the mixture model as part of the reconstruction we

directly look for this simple representation. This modification in modelling does not necessarily

improve the reconstruction objectively unless the true data follows a GMM, or improves it very

subtly as shown in figure 6.12c, but it conditions the data towards a more accurate segmentation.

These results motivate the design of new methods to handle medical image data that break out

of the traditional serial pipeline, and where the end application and utility of the image assumes

a primary role. These new methods, which we refer to as application-driven, could also integrate

acquisition and perhaps interpretation stages, providing dedicated scanning procedures that are

more e�cient and which directly and accurately reveal clinically relevant parameters such as

ejection fraction or hippocampal volume changes in follow-up scans. It is also important to note

that not all MRI scans could be application-driven because sometimes they are exploratory and
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the relevant parameters looked for in the image are not known in advance.

Caution should nevertheless be taken when analysing the results presented in this work. In

particular, it should be noted that the setup of the experiments is not identical to a practical

situation because they simulate a single coil scenario and do not take in charge the complex-

valued nature of MR images. Nonetheless as previously mentioned, we anticipate that the

patch-based reconstruction method could be adapted to parallel complex-valued reconstructions

as in the previous chapter, and the extension of the mixture model to represent complex data

is straightforward. The analysis of parallel and complex-valued experiments however requires

individual treatment and are left as future work. Additionally, undersampling trajectories

as the one shown in figure 6.6c achieve high aliasing incoherence but are not in all cases

feasible. Alternatives to 1D Cartesian sampling, such as radial or spiral sampling, could also

be investigated.

6.7 Conclusion

We have presented a method for joint reconstruction and segmentation of undersampled MR

data and have applied it for cardiac and brain tissue segmentation. The experiments compared

the joint method with a separate approach, where data was first non-linearly reconstructed

using CS and then subsequently segmented. The joint method proved to be more accurate

than the separate for left ventricle segmentation in cardiac cine MR when compared against

a segmentation of the fully sampled data. Moreover, extending the method with probabilistic

priors and MRF regularisation, a brain tissue segmentation was achieved from highly under-

sampled data comparable to a manual labelling of fully sampled scans. Again, the joint method

outperformed the separate in terms of Dice metrics.

In scenarios where the end application of the imaging experiment is known a priori, it may be

beneficial to purposely redesign the procedure for information extraction leading to a symbiotic

joint processing such as the method presented. Future work could explore the direct extraction
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of clinical parameters and investigate alternative designs for acquisition trajectories that are

dedicated for a precise application. Such application-driven scans could tackle ine�ciencies

and error propagation of the traditional imaging workflow, ultimately opening the spectrum of

scanning procedures to include cheaper and more e�cient solutions for MRI.



Chapter 7

Conclusion

Medical imaging constitutes a fundamental component of medical research and diagnosis. The

demand for MRI has risen particularly fast because it is non-invasive, non-ionising, and is

a versatile tool to explore the structure and function of the human body. The technology

underlying MR scanners is nevertheless far from ideal, and su↵ers from a number of ine�ciencies

that ballast its widespread use and availability, and the main objective of this thesis has been

to provide solutions to these ine�ciencies. In this chapter we summarise the contents of the

thesis and we identify its achievements and limitations. We conclude with a discussion taking

a broader outlook at the research undertaken.

We have identified and targeted three sources of ine�ciency that are challenging the progress

of MRI:

• Slow raw data acquisition,

• High information reduction from acquisition to analysis,

• Lack of reuse of past scans to improve future scans.

We have focussed on the case of dynamic cardiac imaging. Dynamic MR acquisition is particu-

larly a↵ected by speed constraints because it needs to trade-o↵ spatial and temporal resolutions

165
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against each other. This causes discomfort to patients, who are requested to perform a breath-

hold for the duration of the scan, and prolongs imaging routines that need to resort to ECG

gating. Fortunately, cardiac cine data has the advantage that it targets the inspection of

relatively slow temporal changes, making it highly redundant in time and hence allowing to

drastically reduce sampling requirements. Furthermore, the analysis of cardiac cine imaging

in some cases reduces to the delineation of ventricle and myocardium boundaries, for an esti-

mation of ejection fraction and cardiac mass. This is very succinct information to be derived

from the highly complex raw data acquired, which is why more e�cient paradigms for analysis

information extraction would be plausible.

In this thesis, we have explored the applicability of recently proposed machine learning methods

using adaptive dictionaries for fast and informative dynamic MRI acquisition. Sparse image

penalties have shown promise in the acceleration of MRI acquisition drawing from CS theory,

although this can be at the expense of some loss in image quality when undersampling becomes

extreme. We have shown how the use of overcomplete and adaptive sparse transforms instead

of common complete and fixed transforms can reduce the impact on image degradation that

scan acceleration has. The additional ability to train dictionaries on past images also presents

one way forward to learn information from past images that could be employed to improve

the quality of future scans. Finally, the energy minimisation formulation of dictionary-based

reconstructions is well suited for its combination with simpler models that can reveal analysis

information about the image as a by-product of the reconstruction process.

7.1 Achievements

Application of DL to cardiac MRI acceleration

The application of DL to cardiac cine data acquisition was proposed in chapter 4 in a simulated

single MR coil scenario. The objective was to compare the reconstruction capabilities from an

accelerated scan provided by the proposed method based on DL sparsity, and a competing



7.1. Achievements 167

method based on a non-adaptive transform sparsity. The results obtained demonstrated that

the flexibility of the transform derived from its overcompleteness can greatly improve recon-

struction results in reducing the acceleration aliasing. It was shown to maintain reconstruction

PSNR above 30 dB within a heart ROI for acceleration rates up to 8 fold, whereas the compet-

ing method could only guarantee this metric at a maximum of 4 fold acceleration. Irrespective

of the acceleration rate, it was shown to achieve an increase of 5 dB in PSNR inside a heart

ROI relative to the competing method, and was also validated to be more robust to noise.

Extension of the method to parallel MRI

The concept of overcomplete and adaptive patch-based sparsity was successfully applied in

the parallel coil setup in chapter 5, where the data is acquired by more than one coil hence

generating redundancy through hardware. Parallel MRI developments were introduced earlier

than CS, and have been established as the norm to accelerate MR scans by almost 4 fold. It is

therefore important that the method is able to process parallel coil data, and this was achieved

as an extension of the SPIRiT method. We demonstrated good performance in retrospective

cardiac cine experiments compared to complete and non-adaptive transforms. Moreover, tests

on prospectively acquired data showed an important quality enhancement for accelerated scans

of up to a 8 fold acceleration compared to the scanner’s reconstruction. The method took

part in the ISMRM 2014 cardiac cine reconstruction challenge and ranked on average 10 out

of 22 participants, with results comparable to the top performing method in cases using either

Poisson or regular time-varying undersampling.

Joint reconstruction and segmentation from raw data

In chapter 6 we went beyond MR acquisition speed limitations and investigated the joint re-

construction and analysis of MR data to suggest a more e�cient handling of information from

acquisition to clinical information extraction. Building upon the DL based reconstruction

method for undersampled data, we proposed a joint reconstruction and segmentation for MR
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images by forcing the reconstructed data to fit a discriminative model at the same time as it

was being reconstructed. Traditionally, CS for MRI has focussed on providing the most ac-

curate image reconstruction, even though many times in practice images are simply a means

for clinical parameter measurement. Jointly reconstructing and segmenting MR data not only

proved to be a more e�cient mechanism to yield segmented images of cardiac cine data, but

was also demonstrated to be more accurate than a disjoint handling of undersampled data re-

construction and segmentation, with around 2% less left ventricle pixel misclassification. This

allowed to maintain left ventricle pixel misclassification below 18% for undersampling rates up

to 14 fold in a single coil setup. The framework was also shown to be applicable to 3D brain

tissue classification incorporating probabilistic priors and MRF regularisation, achieving over

a 0.87 Dice coe�cient relative to manual segmentations even for extreme 24 fold simulated

undersampling rates. Most notably, the concept termed application-driven MRI could be ex-

tended to other applications in an attempt to e�ciently grasp only useful information as early

in the imaging pipeline as raw data acquisition.

7.2 Limitations and future work

Computational cost

One of the major limitations of the application of DL to MRI acquisition acceleration is com-

putational complexity, which became apparent in chapter 4. It was noted that optimal results

for an acceleration rate of 6 fold required a computing time of 6.6 hours. However, relaxing

memory constraints, using a simple dynamic choice of tuning parameters and parallelising com-

putation over 8 CPU cores reduced runtime to 6 minutes without compromising image quality.

The use of parallel OMP computations in a GPU architecture as proposed in [51, 14] is ex-

pected to dramatically cut runtime, and more clever reconstruction initialisations could also

be explored as future work. A study submitted for publication [10] shows how an initialisation

based on manifold learning that is very fast to obtain, can cut down the runtime of DL based
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reconstruction by almost 6 times. These extensions could potentially speed up reconstruction

time to match fast competing methods such as k-t FOCUSS, which converges in less than 1

minute.

Undersampling strategy for parallel MRI

The extension of the method to parallel imaging in chapter 5 encountered other challenges.

Although computational e↵orts in the parallel reconstruction method proposed are still consid-

erable, the convergence of the method was increased by the initial reconstruction provided by

the SPIRiT algorithm. The biggest limitation encountered were restrictions on data sampling.

Participating in the ISMRM challenge helped reveal large di↵erences in reconstruction quality

depending on the undersampling mask design used. Random undersampling, allowing large

gaps without samples in k-space, proved to be a bad choice for the method presented. This was

the case for all participating methods, but appeared to be particularly harmful for our method

because of the coil recombination mechanism of SPIRiT. However, CS methods theoretically

thrive with random undersampling because it o↵ers maximal sampling incoherence. It would

be interesting to analyse the importance of incoherent sampling in hybrid parallel CS methods

like the one presented here considering parallel imaging undersampling constraints. Also, a

necessary extension to the results shown in the thesis would be to implement a CS compatible

undersampling scheme to present prospective results under optimal conditions.

Feeding information from analysis to reconstruction domain

A major limitation for the development of application-driven MRI as presented in chapter 6

has been designing a constructive interaction between raw data and the simpler discriminative

model from which we can infer clinical parameters. In the segmentation application discussed in

this work, we exploited the generative properties of a GMM to feed intensity information from a

given labelling back to the image domain with a sense for uncertainty. This framework however

brakes down if probabilistic prior information about the segmentation is incorporated into the
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model, because they do not only carry intensity based information. Although comparisons

in brain tissue segmentation from accelerated scans relative to manual segmentations were

successful and convincing, they deviated from the fully sampled case more when data was

jointly reconstructed and segmented than when it was processed disjointly. This is a limitation

that is likely to be encountered if the concept is applied to a di↵erent application, and novel

techniques to directly link clinical measures to raw data will have to be engineered.

7.3 Discussion

In this concluding section, we reflect upon the thesis’s initial motivation, the discoveries made

along the way and the outlook for future related research.

Thesis overview

The starting point for this thesis was to explore the potential use of sparse and adaptive

dictionaries for cardiac MRI sequence reconstructions. Trained dictionaries are a very recent

natural evolution of signal representation by frames, popularised amongst others by Elad [49],

and had been proposed for undersampled MRI reconstruction by Ravishankar and Bresler [117]

with considerable improvements in performance compared to the pioneering work of Lustig et

al. in [86].

Cardiac cine acquisition was targeted given that it imposes particularly challenging sampling

conditions and has the advantage of being highly redundant in time. These realisations were

used as premises to design the reconstruction method DLTG, presented in chapter 4, where

regularisation with a learnt dictionary combined with an additional temporal gradient con-

straint proved to be successful and robust. The method was extended in chapter 5 to provide

the first solution using DL for parallel undersampled MRI reconstruction, and was validated

on prospectively accelerated acquisitions.
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However, in the course of our investigation the limitations of patch-based dictionary regularisa-

tion have also become apparent. Although quantitative comparisons prove satisfactory against

complete and fixed regularisation methods, a recurring side e↵ect of this regularisation when

undersampling is high is a loss of fine details. This is noticeable both in the single coil simu-

lations and in parallel coil tests. We reproduce in figure 7.1 the visual result of a single coil

accelerated simulation of 10 fold. The structure and dynamism of the beating heart is nev-

ertheless relatively well recovered. This recurring phenomenon led to new research questions:

Can we a↵ord the loss of fine detail? How much information are we really losing?

(a) Fully sampled (b) Reconstruction 4 fold (c) Reconstruction 10 fold

Figure 7.1: Detail loss at high undersampling factors shown for a single coil simulation. The
case of 4 fold undersampling can recover fine details, but at high factors such as 10 fold fine
details are lost by the patch-based regularisation method.

The answer to these questions is clearly dependent on the kind of knowledge we would like

to extract from the image, leading to the application-driven paradigm presented in chapter 6,

where the end goal of the imaging experiment must define the acquisition and reconstruction

stages. This concept is broad, and the heterogeneity of clinically useful information makes

it an abstract idea that could be materialised very di↵erently depending on the application.

We implemented a joint reconstruction and segmentation mechanism for extracting clinical

information from cardiac cine scans, demonstrating the benefits of combining reconstruction

and analysis.

Questioning the utility of a given image reconstruction broadened the scope of the thesis,



172 Chapter 7. Conclusion

which could then focus on addressing ine�ciencies in the entire MR imaging pipeline, where

acquisition speed limitations are only one part of the problem. The advance of MR technology

will steadily bring better, more precise scanning, which will enable new applications and improve

the lives of patients, but a major breakthrough in imaging practice could come from smarter

scanning.

Thesis outlook

The shown reconstruction-segmentation method is one example of smarter imaging, but future

research could try to take it further. An image segmentation is not clinical knowledge per se

as it still requires some interpretation, so one possibility would be to try to look for clinical

measures such as ejection fraction or cardiac mass directly from raw data as a by-product of re-

construction. Other routine applications could also be targeted. The assessment of Alzheimer’s

disease progress can for example be performed from an estimation of structural changes in the

hippocampus, where multi-atlas registration and segmentation has proven to be very successful

[5, 150]. A registration process does not normally exploit the entire raw data acquired, so there

could be room for an imaging process that targets optimal registration against another image

with reduced sampling requirements.

Proposing an imaging process where the image is not the main interest may seem contradictory,

and could raise concerns for radiologists who are used to examine images that meet certain

clinical requirements and translate them into knowledge. However, these innovative methods

could be of great interest if the measurements they provide can be shown to be as accurate

within a confidence interval as the ones obtained with traditional scanning, but with a much

more e�cient, faster and therefore cheaper acquisition.

We have mentioned how the use of overcomplete, adaptive dictionaries for accelerated MR

imaging indirectly led to the definition of the broad thesis topic, but they are not indispensable.

Patch-based dictionaries proved to be a good fit for a joint reconstruction and segmentation

given that they preserve sharp edges and miss fine details, which can be beneficial for image
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segmentation, but there have been extensions to this representation that could improve the

work of this thesis. Some examples are the use of multi-resolution DL [106] or training features

on domains sparser than the image domain [82]. Another interesting avenue could be to use not

only the reconstructive power of patch-based dictionaries, but also employ other capabilities

they are known for in the application-driven scenario, such as image segmentation [90], super-

resolution [153] or inpainting [89].

Another front which has been very much unexplored in this thesis has been novel k-space

undersampling. The sampling used for the collection of undersampled data was only ensured to

contain some degree of randomness such as to comply with the incoherence requirements of CS

reconstruction, but it is very likely that better solutions exist. It has already been shown that

adapting the undersampling to the dataset can be beneficial for data recovery [116], and other

designs could be explored in the context of application-driven MRI. The acquisition strategy

of the joint reconstruction and segmentation method could for instance highlight sharp edges

by missing low frequency components, which is the opposite of what was done in this work.

To conclude, in this thesis we have distinguished di↵erent sources of ine�ciencies in acquisition

and processing, and have adapted DL techniques for MRI to propose a possible solution, with

its own advantages and limitations. This discussion highlights nonetheless the many di↵erent

avenues that could have been taken and which open up possibilities to further explore the topics

in this thesis. The pairing of machine learning with imaging process and the ever increasing

amounts of MR data produced are bound to bring great advances to medical imaging and

continue influencing the lives of patients.
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